19 research outputs found

    Engineering Algorithms for Route Planning in Multimodal Transportation Networks

    Get PDF
    Practical algorithms for route planning in transportation networks are a showpiece of successful Algorithm Engineering. This has produced many speedup techniques, varying in preprocessing time, space, query performance, simplicity, and ease of implementation. This thesis explores solutions to more realistic scenarios, taking into account, e.g., traffic, user preferences, public transit schedules, and the options offered by the many modalities of modern transportation networks

    Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

    Full text link
    There has been tremendous progress in algorithmic methods for computing driving directions on road networks. Most of that work focuses on time-independent route planning, where it is assumed that the cost on each arc is constant per query. In practice, the current traffic situation significantly influences the travel time on large parts of the road network, and it changes over the day. One can distinguish between traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e.g., accidents. In this work, we study the \emph{dynamic and time-dependent} route planning problem, which takes both prediction (based on historical data) and live traffic into account. To this end, we propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric~(e.g., due to traffic updates or user restrictions) faster than previous approaches, while allowing subsequent queries that enable interactive applications

    Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

    Get PDF
    We study the problem of computing delay-robust routes in timetable networks. Instead of a single path we compute a decision graph containing all stops and trains/vehicles that might be relevant. Delays are formalized using a stochastic model. We show how to compute a decision graph that minimizes the expected arrival time while bounding the latest arrival time over all sub-paths. Finally we show how the information contained within a decision graph can compactly be represented to the user. We experimentally evaluate our algorithms and show that the running times allow for interactive usage on a realistic train network

    Modeling and Engineering Constrained Shortest Path Algorithms for Battery Electric Vehicles

    Get PDF
    We study the problem of computing constrained shortest paths for battery electric vehicles. Since battery capacities are limited, fastest routes are often infeasible. Instead, users are interested in fast routes where the energy consumption does not exceed the battery capacity. For that, drivers can deliberately reduce speed to save energy. Hence, route planning should provide both path and speed recommendations. To tackle the resulting NP-hard optimization problem, previous work trades correctness or accuracy of the underlying model for practical running times. In this work, we present a novel framework to compute optimal constrained shortest paths for electric vehicles that uses more realistic physical models, while taking speed adaptation into account. Careful algorithm engineering makes the approach practical even on large, realistic road networks: We compute optimal solutions in less than a second for typical battery capacities, matching performance of previous inexact methods. For even faster performance, the approach can easily be extended with heuristics that provide high quality solutions within milliseconds

    Faster Transit Routing by Hyper Partitioning

    Get PDF
    We present a preprocessing-based acceleration technique for computing bi-criteria Pareto-optimal journeys in public transit networks, based on the well-known RAPTOR algorithm [Delling et al 2015]. Our key idea is to first partition a hypergraph into cells, in which vertices correspond to routes (e.g., bus lines) and hyperedges to stops, and to then mark routes sufficient for optimal travel across cells. The query can then be restricted to marked routes and those in the source and target cells. This results in a practical approach, suitable for networks that are too large to be efficiently handled by the basic RAPTOR algorithm

    Energy-Optimal Routes for Electric Vehicles

    Get PDF
    Abstract. We study the problem of electric vehicle route planning, where an important aspect is computing paths that minimize energy consumption. Thereby, any method must cope with specific properties, such as recuperation, battery constraints (over- and under-charging), and frequently changing cost functions (e. g., due to weather conditions). This work presents a practical algorithm that quickly computes energy-optimal routes for networks of continental scale. Exploiting multi-level overlay graphs [26, 31], we extend the Customizable Route Planning approach [8] to our scenario in a sound manner. This includes the efficient computation of profile queries and the adaption of bidirectional search to battery constraints. Our experimental study uses detailed consumption data measured from a production vehicle (Peugeot iOn). It reveals for the network of Europe that a new cost function can be incorporated in about five seconds, after which we answer random queries within 0.3ms on average. Additional evaluation on an artificial but realistic [22, 36] vehicle model with unlimited range demonstrates the excellent scalability of our algorithm: Even for long-range queries across Europe it achieves query times below 5ms on average—fast enough for interactive applications. Altogether, our algorithm exhibits faster query times than previous approaches, while improving (metric-dependent) preprocessing time by three orders of magnitude.
    corecore