14,248 research outputs found

    Bridge over troubled gas: clusters and associations under the SMC and LMC tidal stresses

    Full text link
    We obtained SOAR telescope B and V photometry of 14 star clusters and 2 associations in the Bridge tidal structure connecting the LMC and SMC. These objects are used to study the formation and evolution of star clusters and associations under tidal stresses from the Clouds. Typical star clusters in the Bridge are not richly populated and have in general relatively large diameters (~30-35 pc), being larger than Galactic counterparts of similar age. Ages and other fundamental parameters are determined with field-star decontaminated photometry. A self-consistent approach is used to derive parameters for the most-populated sample cluster NGC 796 and two young CMD templates built with the remaining Bridge clusters. We find that the clusters are not coeval in the Bridge. They range from approximately a few Myr (still related to optical HII regions and WISE and Spitzer dust emission measurements) to about 100-200 Myr. The derived distance moduli for the Bridge objects suggests that the Bridge is a structure connecting the LMC far-side in the East to the foreground of the SMC to the West. Most of the present clusters are part of the tidal dwarf candidate D 1, which is associated with an H I overdensity. We find further evidence that the studied part of the Bridge is evolving into a tidal dwarf galaxy, decoupling from the Bridge.Comment: 15 pages, 15 figures, MNRAS, Accepted 2015 July 2

    Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications

    Get PDF
    We develop a self-consistent relativistic disordered local moment (RDLM) scheme aimed at describing finite temperature magnetism of itinerant metals from first principles. Our implementation in terms of the Korringa--Kohn--Rostoker multiple scattering theory and the coherent potential approximation allows to relate the orientational distribution of the spins to the electronic structure, thus a self-consistent treatment of the distribution is possible. We present applications for bulk bcc Fe, L10_0-FePt and FeRh ordered in the CsCl structure. The calculations for Fe show significant variation of the local moments with temperature, whereas according to the mean field treatment of the spin fluctuations the Curie temperature is overestimated. The magnetic anisotropy of FePt alloys is found to depend strongly on intermixing between nominally Fe and Pt layers, and it shows a power-law behavior as a function of magnetization for a broad range of chemical disorder. In case of FeRh we construct a lattice constant vs. temperature phase diagram and determine the phaseline of metamagnetic transitions based on self-consistent RDLM free energy curves.Comment: 11 pages, 8 figure

    Fluctuating local moments, itinerant electrons and the magnetocaloric effect: the compositional hypersensitivity of FeRh

    Get PDF
    We describe an ab-initio Disordered Local Moment Theory for materials with quenched static compositional disorder traversing first order magnetic phase transitions. It accounts quantitatively for metamagnetic changes and the magnetocaloric effect. For perfect stoichiometric B2-ordered FeRh, we calculate the transition temperature of the ferromagnetic-antiferromagnetic transition to be Tt=T_t = 495K and a maximum isothermal entropy change in 2 Tesla of ΔS=21.1|\Delta S|= 21.1 J~K1^{-1}~kg1^{-1}. A large (40\%) component of ΔS|\Delta S| is electronic. The transition results from a fine balance of competing electronic effects which is disturbed by small compositional changes - e.g. swapping just 2\% Fe of `defects' onto the Rh sublattice makes TtT_t drop by 290K. This hypersensitivity explains the narrow compositional range of the transition and impurity doping effects.Comment: 11 pages, 4 figure

    Time dependent transformations in deformation quantization

    Full text link
    We study the action of time dependent canonical and coordinate transformations in phase space quantum mechanics. We extend the covariant formulation of the theory by providing a formalism that is fully invariant under both standard and time dependent coordinate transformations. This result considerably enlarges the set of possible phase space representations of quantum mechanics and makes it possible to construct a causal representation for the distributional sector of Wigner quantum mechanics.Comment: 16 pages, to appear in the J. Math. Phy

    Axion Like Particles and the Inverse Seesaw Mechanism

    Get PDF
    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ\gamma-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1)(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange

    Half Quantization

    Full text link
    A general dynamical system composed by two coupled sectors is considered. The initial time configuration of one of these sectors is described by a set of classical data while the other is described by standard quantum data. These dynamical systems will be named half quantum. The aim of this paper is to derive the dynamical evolution of a general half quantum system from its full quantum formulation. The standard approach would be to use quantum mechanics to make predictions for the time evolution of the half quantum initial data. The main problem is how can quantum mechanics be applied to a dynamical system whose initial time configuration is not described by a set of fully quantum data. A solution to this problem is presented and used, as a guideline to obtain a general formulation of coupled classical-quantum dynamics. Finally, a quantization prescription mapping a given classical theory to the correspondent half quantum one is presented.Comment: 20 pages, LaTex file, Substantially revised versio

    Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    Get PDF
    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hy- poinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used “a priori”. The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the seismotectonic picture of the region. This work is expected to produce a more detailed knowledge of the structure of the crust over the region of Algarve, being able to identify seismogenic zones, potentially generators of significant seismic events and also the identification of zones of active faults

    Noncommutative Black Holes and the Singularity Problem

    Full text link
    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.Comment: Based on a talk by CB at ERE2010, Granada, Spain, 6th-10th September 201
    corecore