4 research outputs found

    Photocatalytic Hydrogen Production Of Co(oh)2 Nanoparticle-coated α-fe2o3 Nanorings

    Get PDF
    The production of hydrogen from water using only a catalyst and solar energy is one of the most challenging and promising outlets for the generation of clean and renewable energy. Semiconductor photocatalysts for solar hydrogen production by water photolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers capable of harvesting light photons with adequate potential to reduce water. Here, we show that α-Fe 2O3 can meet these requirements by means of using hydrothermally prepared nanorings. These iron oxide nanoring photocatalysts proved capable of producing hydrogen efficiently without application of an external bias. In addition, Co(OH)2 nanoparticles were shown to be efficient co-catalysts on the nanoring surface by improving the efficiency of hydrogen generation. Both nanoparticle-coated and uncoated nanorings displayed superior photocatalytic activity for hydrogen evolution when compared with TiO2 nanoparticles, showing themselves to be promising materials for water-splitting using only solar light. © The Royal Society of Chemistry 2013.51993109316Navarro Yerga, R.M., Álvarez Galván, M.C., Del Valle, F., Villoria De La Mano, J.A., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Fujishima, A., Honda, K., (1972) Nature, 238, pp. 37-38Kudo, A., Miseki, Y., (2009) Chem. Soc. Rev., 38, pp. 253-278Sivula, K., Le Formal, F., Gratzel, M., (2011) ChemSusChem, 4, pp. 432-449Yerga, R.M.N., Galvan, M.C.A., Del Valle, F., De La Mano, J.A.V., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Chen, X.B., Shen, S.H., Guo, L.J., Mao, S.S., (2010) Chem. Rev., 110, pp. 6503-6570Hernandez-Alonso, M.D., Fresno, F., Suarez, S., Coronado, J.M., (2009) Energy Environ. Sci., 2, pp. 1231-1257Kudo, A., (2003) Catal. Surv. Asia, 7, pp. 31-38Wender, H., Feil, A.F., Diaz, L.B., Ribeiro, C.S., Machado, G.J., Migowski, P., Weibel, D.E., Teixeira, S.R., (2011) ACS Appl. Mater. Interfaces, 3, pp. 1359-1365Khan, S.U.M., Al-Shahry, M., Ingler, W.B., (2002) Science, 297, pp. 2243-2245Sreethawong, T., Ngamsinlapasathian, S., Suzuki, Y., Yoshikawa, S., (2005) J. Mol. Catal. A: Chem., 235, pp. 1-11Li, Z.H., Chen, G., Tian, X.J., Li, Y.X., (2008) Mater. Res. Bull., 43, pp. 1781-1788Meng, F.K., Hong, Z.L., Arndt, J., Li, M., Zhi, M.J., Yang, F., Wu, N.Q., (2012) Nano Res., 5, pp. 213-221Pei, D.H., Luan, J.F., (2012) Int. J. Photoenergy, , 10.1155/2012/262831Sun, J.W., Liu, C., Yang, P.D., (2011) J. Am. Chem. Soc., 133, pp. 19306-19309Nann, T., Ibrahim, S.K., Woi, P.M., Xu, S., Ziegler, J., Pickett, C.J., (2010) Angew. Chem., Int. Ed., 49, pp. 1574-1577Higashi, M., Domen, K., Abe, R., (2011) Energy Environ. Sci., 4, pp. 4138-4147Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., Domen, K., (2011) J. Am. Chem. Soc., 133, pp. 12334-12337Ikeue, K., Shiiba, S., Machida, M., (2011) ChemSusChem, 4, pp. 269-273Yu, J.G., Yang, B., Cheng, B., (2012) Nanoscale, 4, pp. 2670-2677Yashima, M., Ogisu, K., Domen, K., (2008) Acta Crystallogr., Sect. B: Struct. Sci., 64, pp. 291-298Yan, Q., Zhu, J., Yin, Z., Yang, D., Sun, T., Yu, H., Hoster, H.E., Zhang, H., (2013) Energy Environ. Sci., 6 (3), pp. 987-993Tahir, A.A., Wijayantha, K.G.U., Saremi-Yarahmadi, S., Mazhar, M., McKee, V., (2009) Chem. Mater., 21, pp. 3763-3772Rangaraju, R.R., Panday, A., Raja, K.S., Misra, M., (2009) J. Phys. D: Appl. Phys., 42Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., Dass, S., (2008) Int. J. Hydrogen Energy, 33, pp. 312-318Saremi-Yarahmadi, S., Vaidhyanathan, B., Wijayantha, K.G.U., (2010) Int. J. Hydrogen Energy, 35, pp. 10155-10165Lin, Y., Xu, Y., Mayer, M.T., Simpson, Z.I., McMahon, G., Zhou, S., Wang, D., (2012) J. Am. Chem. Soc., 134, pp. 5508-5511Kumar, P., Sharma, P., Solanki, A., Tripathi, A., Deva, D., Shrivastav, R., Dass, S., Satsangi, V.R., (2012) Int. J. Hydrogen Energy, 37, pp. 3626-3632Kronawitter, C.X., Vayssieres, L., Shen, S.H., Guo, L.J., Wheeler, D.A., Zhang, J.Z., Antoun, B.R., Mao, S.S., (2011) Energy Environ. Sci., 4, pp. 3889-3899Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., Guo, J.H., (2005) Adv. Mater., 17, pp. 2320-2323Jia, C.-J., Sun, L.-D., Luo, F., Han, X.-D., Heyderman, L.J., Yan, Z.-G., Yan, C.-H., Raabe, J.R., (2008) J. Am. Chem. Soc., 130, pp. 16968-16977De La Peña, F., Barrett, N., Zagonel, L.F., Walls, M., Renault, O., (2010) Surf. Sci., 604, pp. 1628-1636De La Peña, F., Berger, M.H., Hochepied, J.F., Dynys, F., Stephan, O., Walls, M., (2011) Ultramicroscopy, 111, pp. 169-176Chen, S.-Y., Gloter, A., Zobelli, A., Wang, L., Chen, C.-H., Colliex, C., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 104103Gonçalves, R.V., Migowski, P., Wender, H., Eberhardt, D., Weibel, D.E., Sonaglio V. F, C., Zapata, M.J.M., Teixeira, S.R., (2012) J. Phys. Chem. C, 116, pp. 14022-14030Zhao, Y., Feltes, T.E., Regalbuto, J.R., Meyer, R.J., Klie, R.F., (2010) J. Appl. Phys., 108, pp. 063704-063707Zhang, Z., (2007) Ultramicroscopy, 107, pp. 598-603Liu, B., Nakata, K., Liu, S., Sakai, M., Ochiai, T., Murakami, T., Takagi, K., Fujishima, A., (2012) J. Phys. Chem. C, 116, pp. 7471-7479An, W.-J., Wang, W.-N., Ramalingam, B., Mukherjee, S., Daubayev, B., Gangopadhyay, S., Biswas, P., (2012) Langmuir, 28, pp. 7528-7534Jang, J.S., Choi, S.H., Kim, D.H., Jang, J.W., Lee, K.S., Lee, J.S., (2009) J. Phys. Chem. C, 113, pp. 8990-8996Li, Z., Wang, Y., Liu, J., Chen, G., Li, Y., Zhou, C., (2009) Int. J. Hydrogen Energy, 34, pp. 147-152Shimizu, K.-I., Tsuji, Y., Hatamachi, T., Toda, K., Kodama, T., Sato, M., Kitayama, Y., (2004) Phys. Chem. Chem. Phys., 6, pp. 1064-106

    NAA and NAAG variation in neuronal activation during visual stimulation

    No full text
    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate
    corecore