7 research outputs found

    Acrylamide Mitigation In French Fries Using Native L-asparaginase From Aspergillus Oryzae Cct 3940

    No full text
    The Maillard reaction is responsible for color and flavor formation in fried, roasted and baked foods. However, this reaction can also promote the formation of acrylamide, a potential human carcinogen. The application of L-asparaginase represents a promising method for acrylamide mitigation in heated products by the direct conversion of the precursor L-asparagine to L-aspartic acid and ammonia, which does not lead to additional acrylamide formation. Our research group produced and purified an Lasparaginase from native Aspergillus oryzae CCT 3940 with highly potential for acrylamide mitigation. To verify the enzymatic effectiveness, we compared the native L-asparaginase with the commercial recombinant enzyme. For this purpose, a GC-MS/MS method was developed, optimized and validated for the assessment of acrylamide in French fries. Our results indicate a relationship between the L-asparagine content and acrylamide formation in French fries. The acrylamide concentration of the fried potato treated with the L-asparaginase from A. oryzae CCT 3940 and treated with commercial enzyme reduced 72% and 92%, respectively compared to control sample. Moreover, the L-asparaginase from A. oryzae CCT 3940 showed no L-glutaminase activity, while commercial enzyme promoted a decrease in the L-glutamine content (25%). Our results suggest that L-asparaginase from A. oryzae CCT 3940 may be of great value for acrylamide mitigation. (C) 2016 Elsevier Ltd. All rights reserved.76part B22222911th Latin American Symposium on Food Science (SLACA)NOV 08-11, 2015Sao Paulo, BRAZI

    From a Single-Stage to a Two-Stage Countercurrent Extraction of Lipids and Proteins from Full-Fat Chickpea Flour: Maximizing Process Extractability and Economic Feasibility

    No full text
    The mainstream adoption of chickpea proteins and lipids requires a thorough understanding of the impact of critical extraction parameters (enzyme use, reaction time, and solids-to-liquid ratio—SLR) and modes of extraction (single-stage extraction—SSE and countercurrent extraction—CCE) on the simultaneous extraction of lipids and proteins from full-fat chickpea flour and economic process feasibility. A kinetics study revealed that 68.5% oil and 87% protein extraction yields can be achieved using 0.5% protease at pH 9.0, 50 °C, 60 min, and 1:10 SLR, highlighting the role of proteolysis and an adequate incubation time on overall extractability. An increased gradient concentration between the matrix and aqueous media solutes at a lower SLR (1:15), and reduced slurry viscosity increased oil and protein extractability to 80 and 91%, respectively. The high-water usage in the SSE was addressed by the development of a two-stage CCE that reduced water usage by 47% while increasing oil and protein extractability to ~96%. Higher extractability and reduced water usage in the two-stage CCE resulted in a higher net gross profit, thus outweighing its higher operating costs. The results presented herein further widen the scope of bioprocessing standards for full-fat chickpea flour and add to the elucidation of the impact of key processing conditions on the extractability and economic feasibility of the production of chickpea ingredients for subsequent food/nutraceutical applications

    Revitalizing Unfermented Cabernet Sauvignon Pomace Using an Eco-Friendly, Two-Stage Countercurrent Process: Role of pH on the Extractability of Bioactive Phenolics

    No full text
    As the major byproduct of the winemaking industry, grape pomace remains an untapped source of valuable bioactive phenolic compounds. This study elucidated the optimal aqueous extraction parameters for maximizing phenolic extractability, while avoiding the use of harsh conventional solvents and limiting water usage, from Cabernet Sauvignon grape pomace in which the red grape was processed for white wine. In the single-stage aqueous extraction process (AEP), the concurrent impact of pH (2.64–9.36), solids-to-liquid ratio (SLR, g pomace/mL water) (1:50–1:5), and temperature (41.6–58.4 °C) on the total phenolic content (TPC) of Cabernet Sauvignon pomace was evaluated alongside a kinetic study (15–90 min). Optimal single-stage extraction conditions (pH 9.36, 1:50 SLR, 50 °C, 75 min) guided the development of a two-stage countercurrent extraction process (pH 9.36, 1:10 SLR, 50 °C, 75 min) to further reduce water consumption without compromising overall extractability. The countercurrent process reduced fresh water usage by 80%, increased the TPC of the extracts by 18%, and improved the in vitro antioxidant activities (ABTS and ORAC) of the extracts. Untargeted metabolomics enabled the identification of a diverse pool of phenolics, especially flavonol glycosides, associated with grape pomace, while further phenolic quantitation detected improvements in the release of commonly bound phenolics such as ferulic acid, p-coumaric acid, syringic acid, and protocatechuic acid in alkaline extracts compared to the ethanolic extract. This investigation provides an efficient, eco-friendly extraction strategy suitable for applications in functional food, beverage, nutraceutical, and cosmetic industries

    Solid-Phase Extraction Approaches for Improving Oligosaccharide and Small Peptide Identification with Liquid Chromatography-High-Resolution Mass Spectrometry: A Case Study on Proteolyzed Almond Extract.

    No full text
    Reverse-phase solid-phase extraction (SPE) is regularly used for separating and purifying food-derived oligosaccharides and peptides prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. However, the diversity in physicochemical properties of peptides may prevent the complete separation of the two types of analytes. Peptides present in the oligosaccharide fraction not only interfere with glycomics analysis but also escape peptidomics analysis. This work evaluated different SPE approaches for improving LC-MS/MS analysis of both oligosaccharides and peptides through testing on peptide standards and a food sample of commercial interest (proteolyzed almond extract). Compared with conventional reverse-phase SPE, mixed-mode SPE (reverse-phase/strong cation exchange) was more effective in retaining small/hydrophilic peptides and capturing them in the high-organic fraction and thus allowed the identification of more oligosaccharides and dipeptides in the proteolyzed almond extract, with satisfactory MS/MS confirmation. Overall, mixed-mode SPE emerged as the ideal method for simultaneously improving the identification of food-derived oligosaccharides and small peptides using LC-MS/MS analysis

    Effects of protease-assisted aqueous extraction on almond protein profile, digestibility, and antigenicity

    No full text
    Almonds (Prunus dulcis) are one of the most consumed tree nuts worldwide and have been recognized as a healthy and nutritious food. Nevertheless, almonds are also a source of allergenic proteins that can trigger several mild to life-threatening allergic reactions. The effects of selected extraction conditions (aqueous vs. protease-assisted aqueous extraction) on the protein profile determined by proteomics analysis of excised SDS-PAGE gel bands, in vitro protein digestibility, and immunoreactivity of almond protein extracts, were evaluated. Proteolysis altered almond protein sequential and conformational characteristics thus affecting digestibility and antigenicity. Proteomics analysis revealed that enzymatic extraction resulted in the reduction of allergen proteins and epitopes. While complete hydrolysis of Prunin 1 and 2 α-chain was observed, Prunin 1 and 2 β-chains were more resistant to hydrolysis. Protein in vitro digestibility increased from 79.1 to 88.5% after proteolysis, as determined by a static digestion model. The degree of hydrolysis (DH) and peptide content of enzymatically extracted proteins during gastric and duodenal digestion were significantly higher than the ones from unhydrolyzed proteins. Proteolysis resulted in a 75% reduction in almond protein immunoreactivity as determined by a sandwich enzyme-linked immunosorbent assay and a reduction in IgE and IgG reactivities using human sera. The present study shows that moderated hydrolysis (7% DH) using protease can be used as a strategy to improve almond protein digestibility and reduce antigenicity. This study's findings could further enhance the potential use of almond protein hydrolysates in the formulation of hypoallergenic food products with improved nutritional quality and safety
    corecore