8 research outputs found

    Soil and Groundwater Pollution Assessment and Delineation of Intensity Risk Map in Sulaymaniyah City, NE of Iraq

    No full text
    Groundwater and soil pollution caused by (PAHs) spills, mostly from the oil industry and petrol stations in urban areas, represent a major environmental concern worldwide. However, infiltration into groundwater is decreasing due to the natural attenuation processes of PAHs in the vadose zone, which protect invaluable groundwater resources against contamination. This study was conducted to evaluate the effect of improper management of the petroleum industry on the groundwater and soil surrounding the petrol station and an oil refinery unit and, furthermore, to prepare the polluted risk intensity (PRI) map. Fifty-one soil samples and twenty-five water samples were analyzed for Light Non-aqueous Phase Liquid (LNAPLs), and one soil sample for Dense Non-Aqueous Phase Liquid (DNAPLs); furthermore, six soil samples analyzed for Tetraethyl Lead (TEL) analysis. The results showed that seventeen wells were polluted with LNAPLs and the soils were highly contaminated with different DNAPLs components and mainly was in the form of Polycyclic Aromatic Hydrocarbons (PAHs). Seven factors introduced to the GIS platform to produce PRI map, which is the distance to source, depth to water table, slope, lineaments, lithology, soil, and recharge rate. The final map revealed that the eastern and western parts of the study area are at a very high-risk level, whereas the center is at a very low to low-risk level

    Soil and Groundwater Pollution Assessment and Delineation of Intensity Risk Map in Sulaymaniyah City, NE of Iraq

    No full text
    Groundwater and soil pollution caused by (PAHs) spills, mostly from the oil industry and petrol stations in urban areas, represent a major environmental concern worldwide. However, infiltration into groundwater is decreasing due to the natural attenuation processes of PAHs in the vadose zone, which protect invaluable groundwater resources against contamination. This study was conducted to evaluate the effect of improper management of the petroleum industry on the groundwater and soil surrounding the petrol station and an oil refinery unit and, furthermore, to prepare the polluted risk intensity (PRI) map. Fifty-one soil samples and twenty-five water samples were analyzed for Light Non-aqueous Phase Liquid (LNAPLs), and one soil sample for Dense Non-Aqueous Phase Liquid (DNAPLs); furthermore, six soil samples analyzed for Tetraethyl Lead (TEL) analysis. The results showed that seventeen wells were polluted with LNAPLs and the soils were highly contaminated with different DNAPLs components and mainly was in the form of Polycyclic Aromatic Hydrocarbons (PAHs). Seven factors introduced to the GIS platform to produce PRI map, which is the distance to source, depth to water table, slope, lineaments, lithology, soil, and recharge rate. The final map revealed that the eastern and western parts of the study area are at a very high-risk level, whereas the center is at a very low to low-risk level.Validerad;2019;Nivå 2;2019-10-21 (johcin)</p

    Application of DInSAR-PSI Technology for Deformation Monitoring of the Mosul Dam, Iraq

    No full text
    On-going monitoring of deformation of dams is critical to assure their safe and efficient operation. Traditional monitoring methods, based on in-situ sensors measurements on the dam, have some limitations in spatial coverage, observation frequency, and cost. This paper describes the potential use of Synthetic Aperture Radar (SAR) scenes from Sentinel-1A for characterizing deformations at the Mosul Dam (MD) in NW Iraq. Seventy-eight Single Look Complex (SLC) scenes in ascending geometry from the Sentinel-1A scenes, acquired from 03 October 2014 to 27 June 2019, and 96 points within the MD structure, were selected to determine the deformation rate using persistent scatterer interferometry (PSI). Maximum deformation velocity was found to be about 7.4 mm&middot;yr&minus;1 at a longitudinal subsidence area extending over a length of 222 m along the dam axis. The mean subsidence velocity in this area is about 6.27 mm&middot;yr&minus;1 and lies in the center of MD. Subsidence rate shows an inverse relationship with the reservoir water level. It also shows a strong correlation with grouting episodes. Variations in the deformation rate within the same year are most probably due to increased hydrostatic stress which was caused by water storage in the dam that resulted in an increase in solubility of gypsum beds, creating voids and localized collapses underneath the dam. PSI information derived from Sentinel-1A proved to be a good tool for monitoring dam deformation with good accuracy, yielding results that can be used in engineering applications and also risk management

    GIS-Based Modeling for Selection of Dam Sites in the Kurdistan Region, Iraq

    Get PDF
    Iraq, a country in the Middle East, has suffered severe drought events in the past two decades due to a significant decrease in annual precipitation. Water storage by building dams can mitigate drought impacts and assure water supply. This study was designed to identify suitable sites to build new dams within the Al-Khabur River Basin (KhRB). Both the fuzzy analytic hierarchy process (AHP) and the weighted sum method (WSM) were used and compared to select suitable dam sites. A total of 14 layers were used as input dataset (i.e., lithology, tectonic zones, distance to active faults, distance to lineaments, soil type, land cover, hypsometry, slope gradient, average precipitation, stream width, Curve Number Grid, distance to major roads, distance to towns and cities, and distance to villages). Landsat-8/Operational Land Imager (OLI) and QuickBird optical images were used in the study. Three types of accuracies were tested: overall, suitable pixels by number, and suitable pixels by weight. Based on these criteria, we determined that 11 sites are suitable for locating dams for runoff harvesting. Results were compared to the location of 21 preselected dams proposed by the Ministry of Agricultural and Water Resources (MAWR). Three of these dam sites coincide with those proposed by the MAWR. The overall accuracies of the 11 dams ranged between 76.2% and 91.8%. The two most suitable dam sites are located in the center of the study area, with favorable geology, adequate storage capacity, and in close proximity to the population centers. Of the two selection methods, the AHP method performed better as its overall accuracy is greater than that of the WSM. We argue that when stream discharge data are not available, use of high spatial resolution QuickBird imageries to determine stream width for discharge estimation is acceptable and can be used for preliminary dam site selection. The study offers a valuable and relatively inexpensive tool to decision-makers for eliminating sites having severe limitations (less suitable sites) and focusing on those with the least restriction (more suitable sites) for dam construction

    Insights for Landfill Site Selection Using GIS: A Case Study in the Tanjero River Basin, Kurdistan Region, Iraq

    No full text
    The increasing world population and the growing quantity of solid waste have become a challenging problem facing governments and policy makers because of the scarcity of suitable sites for new landfills and the negative perception of these sites by the people. This study aims to evaluate the performance of different Multi-Criteria Decision-Analysis (MCDA) approaches using remote sensing and Geographic Information System (GIS) data for identifying suitable landfill sites (LFSs). We evaluated the methodologies used by various investigators and selected appropriate ones as suitable sites for Municipal Solid Waste (MSW) landfill in the Tanjero River Basin (TRB) in the Iraqi Kurdistan region. We applied Boolean Overlay (BO), Weighted Sum Method (WSM), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP), and Technique for Order Performance by Similarity to an Ideal Solution (TOPSIS) to allow combined use of 15 thematic layers as predictive factors (PFs). In this study, we applied the Topographic Position Index (TPI) for the first time to select MSW LFSs. Almost all methods showed reliable results and we identified eight suitable sites situated in the western part of the TRB having total area of ~18.35 km2. The best accuracy was achieved using the AHP approach. This paper emphasizes that the approach of the used method is useful for selecting LFSs in other areas, which are located in similar environments
    corecore