2,142 research outputs found

    Heterostructured core-Shell Ni-Co@Fe-Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater.

    Get PDF
    The rational construction of efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) is critical to seawater electrolysis. Herein, trimetallic heterostructured core-shell nanoboxes based on Prussian blue analogues (Ni-Co@Fe-Co PBA) were synthesized using an iterative coprecipitation strategy. The same coprecipitation procedure was used for the preparation of the PBA core and shell, with the synthesis of the shell involving chemical etching during the introduction of ferrous ions. Due to its unique structure and composition, the optimized trimetallic Ni-Co@Fe-Co PBA possesses more active interfacial sites and a high specific surface area. As a result, the developed Ni-Co@Fe-Co PBA electrocatalyst exhibits remarkable electrocatalytic HER performance with small overpotentials of 43 and 183 mV to drive a current density of 10 mA cm-2 in alkaline freshwater and simulated seawater, respectively. Operando Raman spectroscopy demonstrates the evolution of Co2+ from Co3+ in the catalyst during HER. Density functional theory simulations reveal that the H*-N adsorption sites lower the barrier energy of the rate-limiting step, and the introduced Fe species improve the electron mobility of Ni-Co@Fe-Co PBA. The charge transfer at the core-shell interface leads to the generation of H* intermediates, thereby enhancing the HER activity. By pairing this HER catalyst (Ni-Co@Fe-Co PBA) with another core-shell PBA OER catalyst (NiCo@A-NiCo-PBA-AA) reported by our group, the fabricated two-electrode electrolyzer was found to achieve high output current densities of 44 and 30 mA cm-2 at a low voltage of 1.6 V in alkaline freshwater and simulated seawater, respectively, exhibiting remarkable durability over a 100 h test

    Dipole-Quadrupole Theory of Surface Enhanced Infrared Absorption and Appearance of Forbidden Lines in the SEIRA Spectra of Symmetrical Molecules

    Full text link
    The paper presents main aspects of the Dipole-Quadrupole theory of Surface Enhanced Infrared Absorption (SEIRA). It is pointed out the possibility of appearance of the lines, caused by totally symmetric vibrations transforming after the unit irreducible representation, which are forbidden in usual infrared absorption spectra in molecules with sufficiently high symmetry. Observation of such lines in the SEIRA spectra of diprotonated and ethylene, adsorbed on and on mordenites is pointed out. The results well agree with our ideas about surface enhanced optical processes, based on the conception of a strong quadrupole light-molecule interaction, which allows us to develop the SERS and SEHRS theories.Comment: 15 pages,3 figures, 1 tabl

    Fatigue strengthening of damaged steel members using wire arc additive manufacturing

    Get PDF
    In this study, a directed energy deposition (DED) process called wire arc additive manufacturing (WAAM) is employed for the fatigue strengthening of damaged steel members. Three steel specimens with central cracks were tested under a high-cycle fatigue loading (HCF) regime: (1) the reference specimen; (2) the WAAM-repaired specimen with an as-deposited profile, and (3) the WAAM-repaired specimen machined to reduce stress concentration factors (SCF). The corresponding finite element (FE) simulation of the WAAM process was calibrated using static experimental results, which revealed the main mechanism. The process was found to introduce compressive residual stresses at the crack tip owing to the thermal contraction of the repair. The FE results also revealed that stress concentration exists at the root of the as-deposited WAAM; this stress concentration can be mitigated by machining the WAAM to a pyramid-like shape. The fractography analysis indicated that the cracks were initiated at the WAAM-steel interface, and microscopic observations revealed that the microcracks were arrested by the porosities in the melted interface. The results of this pioneering study suggest that WAAM repair is a promising technique for combating fatigue damage in steel structures

    Geographical interdependence, international trade and economic dynamics: the Chinese and German solar energy industries

    Get PDF
    The trajectories of the German and Chinese photovoltaic industries differ significantly yet are strongly interdependent. Germany has seen a rapid growth in market demand and a strong increase in production, especially in the less developed eastern half of the country. Chinese growth has been export driven. These contrasting trajectories reflect the roles of market creation, investment and credit and the drivers of innovation and competitiveness. Consequent differences in competiveness have generated major trade disputes

    Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation

    Get PDF
    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.National Science Foundation (U.S.) (NSF AGS-0840732)National Science Foundation (U.S.) (NSF grant AGS-1036275)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Graduate Fellowship)United States. National Aeronautics and Space Administration (NASA Radiation Sciences Program award number NNX07AL11G)United States. National Aeronautics and Space Administration (NASA Radiation Sciences Program award number NNX08AH57G)United States. National Aeronautics and Space Administration (NASA Earth Science Division Atmospheric Composition program award number NNH11AQ58UI
    corecore