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Abstract 

An air-assisted fibre tow spreader was used to produce continuous commingled glass and 

carbon fibre tows. Hybrid carbon and glass fibre (CF/GF) reinforced epoxy composites were 

manufactured from these commingled fibre tows by resin film infusion. The degree of 

hybridisation of the hybrid CF/GF tow was defined and characterised. Compared with the 

corresponding continuous CF/epoxy composite, the hybrid composite with a degree of 

hybridisation of 32.45% exhibits a more gradual tensile failure. The final tensile failure strain 

increased by 14% as compared to that of the carbon fibre epoxy composite. 

 

 

1. Introduction  

 

Conventional unidirectional carbon fibre reinforced polymers (CFRPs) have high specific 

strength and stiffness and a long fatigue life [1]. However, a major disadvantage of these 

materials is that they fail in a brittle manner with little warning, for example, when subjected 

to uniaxial tension loading. Due to their brittle failure behaviour, such materials cannot be 

used in unpredictable load conditions without significant safety factors to ensure the risk of 

catastrophic failure is acceptably low.  

 

In order to create high-performance unidirectional composites exhibiting a more graceful 

failure behaviour, a novel method was used to manufacture a continuous intermingled CF/GF 

hybrid tow. Unlike conventional hybrid composites, which are hybridized at the ply level [2-

6], intermingled composites are hybridized at a filament level. Ideally, the nearest 

neighbouring fibres of one fibre type should be of the other fibre type. When such 

intermingled unidirectional hybrid composites are subjected to longitudinal tension, the initial 

failure is most likely to occur in the fibre type with the smaller failure strain while the nearest 

neighbouring fibres of the other fibre type with a larger strain to failure should still carry load 

and stop the failure propagating. Such a hybrid composite, therefore, could exhibit a non-

linear tensile stress-strain curve with a stepped or gradual tensile failure behaviour. 

Previously, some investigators have tried to hybridise two fibre types within one layer to 

create intralayer hybrid composites via simultaneous filament winding [3, 7], co-weaving [8, 
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9] and air-texturing commingling processes [10, 11], but we could not find any attempt in the 

literature to provide a definition of the degree of hybridisation at the filament level. And there 

were few studies in the literature which established a relationship between the degree of 

hybridisation at the filament level and corresponding tensile behaviour.  

 

In this research, an air-assisted fibre tow spreading technology was used to increase the 

spacing between the fibre filaments within carbon fibre and glass fibre tows separately. Then, 

these two spread fibre tows were intermingled by vacuum airflow to produce a hybrid fibre 

tow. In order to evaluate the degree of hybridisation at the filament level, we developed a 

model to describe randomly-distributed, commingled two-fibre-type tows to determine the 

maximum possible degree of hybridisation. In order to characterise the actual commingled 

hybridisation, an image recognition programme was developed to analyse cross-sectional 

micrographs of the hybrid tow. By comparing modelling results with experimental results, we 

were able to quantify the degree of hybridisation of an intermingled two fibre tow. 

CF/GF/epoxy hybrid composites were manufactured from the hybrid fibre tow and resin film 

via resin film infusion. Finally, their tensile behaviour was characterised.  

 

2. Experimental 

 

2.1. Materials  

 

The continuous carbon fibre tow used (TORAYCA®, T700SC-12K) was kindly provided by 

Toray International UK Ltd. and the continuous E-glass fibre tow (5744-735 Tex) by AGY 

World Headquarters. An epoxy resin film (HexPly®M21, 37g/m2) from Hexcel Co. was used 

as matrix. The diameters of CF and GF are 6.90 ± 0.15 μm and 14.92 ± 0.53 μm (measured by 

modified -Wilhelmy method), respectively. 

 

2.2. Manufacturing route 

 

2.2.1. Manufacturing continuous hybrid CF/GF fibre tow 

 

An air-assisted fibre tow spreading and commingling technology was used to manufacture the 

continuous hybrid CF/GF tow. The principle of this technology is to let air pass through the 

fibre tow in a low-tension or tension-free state [12, 13]. Under these conditions the space 

between the filaments is increased. The overall width of the fibre tow is thereby increased. In 

order to commingle the glass and carbon fibres, the spread fibre tows are then placed on top 

of one another, and an air flow is again passed through this combined fibre tow to further 

spread and commingle the two fibre tows. A fibre tow spreader (Izumi International Inc, US) 

was used to spread carbon and glass fibre tows individually. Then the spread glass fibre tow 

was placed on top of the spread carbon fibre tow. The combined GF/CF tow was then passed 

again through the air-assisted commingling unit, which causes the GF filaments to insert into 

the space between CF filaments. The volume ratio between the CF and GF in the hybrid tow 

was 1.55:1. Control CF and GF tows were also manufactured using the same conditions 

without adding the other type of fibre tow. 

 

2.2.2. Manufacturing hybrid CF/GF reinforced epoxy composites 

 

The CF/GF reinforced epoxy composites were manufactured by resin film infusion. The dry 

CF/GF hybrid tows with a length of 20 cm andwidth of 2 cm were carefully laid up on the 

epoxy films under tension to maintain the fibre alignment. The stacking sequence of the lay-
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up process was E/(H/E)5, where E is epoxy film and H is the dry CF/GF hybrid tow. The 

prepreg was placed into a 20 x 2 cm mould and then heated up from room tempature to 180 

°C at a rate of 3 °C/min under a pressure of 0.8 MPa. The sample was kept at 180 °C and 0.8 

MPa for 2.5h and then cooled down to room tempature. Then the hybrid CF/GF reinforced 

epoxy composite panel with dimension of 20 x 2 x 0.5 cm was removed from the mould. The 

control CF/epoxy and GF/epoxy composites were manufactured using the same method as 

stated above. The fibre volume fractions in the control CF/epoxy, GF/epoxy and hybrid 

composite are all 30% - 40%.  

 

2.3. Microscopy analysis of CF/GF hybrid tows 

 

In order to evaluate the distribution of GF and CF within the hybrid fibre tow, the dry hybrid 

CF/GF tow was carefully fixed using adhesive tape between two microscope slides to 

minimise accidental changes to the fibre arrangement within the tow. Then it was embeded in 

a transparent epoxy (EpoxyCure, Buehler Ltd.) and cured at room temperature overnight. The 

samples were polished and observed using a reflective microscope (AX10, Zeiss Ltd., UK) at 

a magnification of 20x. A typical microscopy image is shown in Figure 1. The micrographs 

were analysed using the an image recognition program which we developed to evaluate the 

fibre distribution within CF/GF hybrid tows.  

 

  
Figure 1. Typical micrograph of the hybrid CF/GF tow 

 

2.4. Characterization of the tensile properties of hybrid CF/GF reinforced epoxy composites 

 

The CF/GF hybrid reinforced epoxy, CF/epoxy and GF/epoxy were end tabbed with woven 

GF reinforced polyester with the thickness of 1.5 mm and then cut to 100 x 5 mm, shown in 

Figure 2. Five specimens of each group were tested under uniaxial tensile load (Instron 5969, 

Instron Ltd, Bucks, UK) at a crosshead rate of 0.5 mm/min. A video extensometer (Imetrum, 

Imetrum Ltd., Bristol, UK) was used to record the strain over the whole gauge length.  

 

 
Figure 2. Dimensions of the test specimen used for the tensile testing 
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3. Results and discussion 

 

3.1. Spreading and commingling CF and GF tows  

 

 As-received (mm) Spread (mm) 

CF tow 5-7 18-22 

GF tow 3 8-12 

Table 1. The widths of as-received and spread CF tow and GF tow 

After spreading CF tow and GF tow individually, the widths of the fibre tows were increased 

compared with those of as-received fibre tows, shown in Table 1. As seen in Figure 3, the 

fibre alignments within spread CF tow and GF tow were good. Figure 4 shows the appearance 

of the combined CF/GF tow before and during the commingling process.  

 

  
Figure 3. Photos of spread (a) CF and (b) GF tows 

 

  
Figure 4. Typical photos of combined CF/GF tow (a) before entering (b) during commingling unit 

 

3.2. Characterisation of the degree of hybridisation of CF/GF tows 

 

3.2.1. Definition of the degree of hybridisation: A model to describe randomly-distributed, 

commingled two-fibre-type tows 

 

The ideal intermingled hybrid CF/GF tow should be one in which both carbon and glass fibres 

are randomly distributed without any organised fibre arrangement. A computer model was 

built to describe the ideally intermingled hybrid CF/GF tow. In this model, elements A and B 

were randomly distributed in an m-by-m matrix. The dimension of the matrix, m, was 

calculated using Equation (1),  

(a) (b) 

(a) (b) 
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 )int( CFGF NNm   (1) 

where NCF and NGF are the numbers of filaments of CF and GF in the hybrid tow. 

                                             
Figure 5. Schematic of randomly-distributed, two-fibre-type hybrid model 

The number ratio between A and B in the model is the same as the one in the hybrid tow to be 

produced. This matrix was subdivided into a certain number of square analysis windows, 

shown in Figure 5. Then the proportion of the cross sectional area of CF in the total cross 

sectional area of GF and CF in each analysis window in the model, ARCF,Model, was calculated 

using Equation (2): 

 

 
            

     
 

     
       

  
(2) 

where NA and NB are the numbers of elements A and B in each analysis window, respectively. 

D is the fibre diameter and the subscripts CF and GF represent carbon fibre and glass fibre, 

respectively. 

 

3.2.2. Microscopy analysis of hybrid CF/GF tows using our image recognition program 

 

A MATLAB program was coded to evaluate the distribution of CF and GF in the micrographs 

of hybrid CF/GF tows. The CFs and GFs were distinguished based on their image colour 

intensity, as seen in Figure 6.The reliability of the image recognition program, R, is 

characterised via Equation (3), 

 
%100

)/(

)''/('







GFCFCF

GFCFCF

VVV

AAA
R  

(3) 

 

where A’ is the total cross sectional area of each fibre type which is determined by this image 

recognition program and V is the volume of each fibre type used in the hybridisation process. 

It was found that R is 95.37%, which means that this image recognition program is 

satisfactory. 

 
Figure 6. Schematic of the hybrid CF/GF tow image recognizing program 

Then this image was also subdivided into a certain number of square analysis windows. The 

CF and GF areas in each analysis window were also determined by this image recognition 

program. The proportion of cross sectional area of CF in the total cross sectional area of GF 

A: CF B: GF 

Analysis window 
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and CF in each analysis window in the micrographs, ARCF,Experiment, was calculated using 

Equation (4),  

 

GFCF

CF
entCF,Experim

AA

A
AR


  

(4) 

where A is the cross sectional area of CF or GF in each analysis window and the subscripts 

CF and GF represent carbon fibre and glass fibre, respectively. In order to achieve a 

representative result, six images (560 x 200 μm) taken from different locations in the hybrid 

tow were analysed using this program. 

 

3.2.3. Definition and quantification of the degree of hybridisation  

 

Because we could not find any attempt in the literature to provide a definition of the degree of 

hybridisation at the filament level. We define the degree of hybridisation by comparing the 

differences between the probability distribution of ARCF,Model and ARCF,Experiment. 
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Figure 7. The probability distributions of ARCF,Model and ARCF,Experiment in the analysis windows with different 

lengths (a) 3Dnominal, (b) 6Dnominal and (c) 14Dnominal (Dnominal= GFCFGFGFCFCF NNDNDN  /)( 22 , where D is 

fibre diameter) 

When the distribution of CFs and GFs in the hybrid tow is the same as the distribution of 

elements A and B in the model, the maximum intermingled hybridization of CF/GF hybrid 

tow was achieved. The distributions of ARCF,Experiment and ARCF,Model in the analysis windows 

with different sizes are shown in the Figure 7. With increasing size of the analysis windows, 

the distribution of ARCF,Experiment became closer to the distribution of ARCF,Model. However, it is 

clear that CFs and GFs were not completely randomly distributed in the hybrid tow.  
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Figure 8. Coefficients of variation in ARCF,Model and ARCF,Experiment as the function of length of analysis window 

In order to quantify the degree of hybridisation, the coefficient of variation (CV) in 

ARCF,Experiment and ARCF,Model was plotted as a function of the length of analysis window in 

Figure 8. The CVmodel decreased sharply from 0.45 to 0.2 with increasing length of the 
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analysis window when it is less than 5xDnominal. Hence, when the length of the analysis 

window is too small (less than 5xDnominal), the distribution of ARCF even in the model has a 

large amount of scatter. On the other hand, a larger analysis window means that analysis 

window contains many more filaments, which tends to equalise the distribution of CFs and 

GFs within one analysis window. Therefore, we selected an analysis window with the length 

of 6xDnominal as the optimal analysis window. The degree of hybridisation H was calculated 

using Equation (5).  

 
%45.32%100 

Experiment

Model

CV

CV
H

 

(5) 

where CVModel and CVExperiment is the coefficient of variation in ARCF,Model and ARCF,Experiment 

when the length of analysis window is 6Dnominal, respectively.  

 

3.3. Tensile behaviour of CF/GF hybrid composite  

 

Figure 9 shows the tensile stress-strain curves of the control CF/epoxy and GF/epoxy 

composites, and hybrid CF/GF/epoxy composites. It is interesting to note that hybrid 

CF/GF/epoxy and control GF/epoxy composites failed more gradually than the control 

CF/epoxy. There were multiple drops in the tensile stress-strain curves of the hybrid 

composites, which means that epoxy resins reinforced using intimately commingled carbon 

and glass fibres do affect the tensile failure mode. As shown in Table 2, the final failure strain 

of the hybrid composite was 14% higher than that of the control CF/epoxy. This improvement 

in final failure strain and the difference in failure mode between hybrid composites and 

control CF/epoxy composites could be associated with the fact that GF and CF were partially 

intermingled in the hybrid composites with a degree of hybridisation of 32.45%. When some 

of the CFs in the hybrid composites failed, the nearby GFs and remaining CFs changed the 

load distribution and delayed crack propagation, which resulted in the stepped and more 

gradual failure of the hybrid composites.  
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Figure 9. The tensile stress-strain curves of (a) control CF/epoxy, (b) CF/GF/epoxy and (c) control 

GF/epoxy 

 

 Max stress 

(MPa) 

Modulus 

(GPa) 

Initial failure strain 

(%) 

Final failure strain 

(%) 

CF/Epoxy 1055 ± 167 73.0 ± 8.8 1.34 ± 0.06  1.34 ± 0.06 

CF/GF/Epoxy   719 ± 103 51.7 ± 5.0 1.33 ± 0.08 1.52 ± 0.05 

GF/Epoxy 458 ± 14 22.9 ± 0.9 2.04 ± 0.11 2.34 ± 0.14 

Table 2. The tensile strength, modulus, the strain to initial and final failure of referenced CF/epoxy, 

CF/GF/epoxy and referenced GF/epoxy (Note: Vf =30%-40%,VCF :VGF = 1.55 :1)  

4. Conclusions 

 

A continuous unidirectional hybrid CF/GF tow containing 12K carbon and 1.63K glass fibres 

was successfully manufactured via air-assisted fibre tow spreading and commingling. The 

S
tre

s
s
 (M

P
a
) 

(a) (b) (c) 



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

8 

 

degree of hybridisation in the CF/GF tow was defined and characterized by comparing the 

fibre-to-fibre distribution obtained from a model of a composite containing randomly 

distributed two-fibre-types and the fibre-to-fibre distribution determined experimentally from 

micrographs of the hybrid fibre tow using an image recognition program. The degree of 

hybridization was defined as 32.45%, which means that CFs and GFs are partially hybridised 

at the filament level within the hybrid tow. Hybrid composites were manufactured from this 

hybrid tow using resin film infusion. Compared with the control CF/epoxy, the hybrid 

composite exhibited a more gradual tensile failure and 14% improvement in its final failure 

strain. 
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