13 research outputs found
An Empirical Study on Android for Saving Non-shared Data on Public Storage
With millions of apps that can be downloaded from official or third-party
market, Android has become one of the most popular mobile platforms today.
These apps help people in all kinds of ways and thus have access to lots of
user's data that in general fall into three categories: sensitive data, data to
be shared with other apps, and non-sensitive data not to be shared with others.
For the first and second type of data, Android has provided very good storage
models: an app's private sensitive data are saved to its private folder that
can only be access by the app itself, and the data to be shared are saved to
public storage (either the external SD card or the emulated SD card area on
internal FLASH memory). But for the last type, i.e., an app's non-sensitive and
non-shared data, there is a big problem in Android's current storage model
which essentially encourages an app to save its non-sensitive data to shared
public storage that can be accessed by other apps. At first glance, it seems no
problem to do so, as those data are non-sensitive after all, but it implicitly
assumes that app developers could correctly identify all sensitive data and
prevent all possible information leakage from private-but-non-sensitive data.
In this paper, we will demonstrate that this is an invalid assumption with a
thorough survey on information leaks of those apps that had followed Android's
recommended storage model for non-sensitive data. Our studies showed that
highly sensitive information from billions of users can be easily hacked by
exploiting the mentioned problematic storage model. Although our empirical
studies are based on a limited set of apps, the identified problems are never
isolated or accidental bugs of those apps being investigated. On the contrary,
the problem is rooted from the vulnerable storage model recommended by Android.
To mitigate the threat, we also propose a defense framework
Vulnerable GPU Memory Management: Towards Recovering Raw Data from GPU
In this paper, we present that security threats coming with existing GPU
memory management strategy are overlooked, which opens a back door for
adversaries to freely break the memory isolation: they enable adversaries
without any privilege in a computer to recover the raw memory data left by
previous processes directly. More importantly, such attacks can work on not
only normal multi-user operating systems, but also cloud computing platforms.
To demonstrate the seriousness of such attacks, we recovered original data
directly from GPU memory residues left by exited commodity applications,
including Google Chrome, Adobe Reader, GIMP, Matlab. The results show that,
because of the vulnerable memory management strategy, commodity applications in
our experiments are all affected
Understanding Android Obfuscation Techniques: A Large-Scale Investigation in the Wild
In this paper, we seek to better understand Android obfuscation and depict a
holistic view of the usage of obfuscation through a large-scale investigation
in the wild. In particular, we focus on four popular obfuscation approaches:
identifier renaming, string encryption, Java reflection, and packing. To obtain
the meaningful statistical results, we designed efficient and lightweight
detection models for each obfuscation technique and applied them to our massive
APK datasets (collected from Google Play, multiple third-party markets, and
malware databases). We have learned several interesting facts from the result.
For example, malware authors use string encryption more frequently, and more
apps on third-party markets than Google Play are packed. We are also interested
in the explanation of each finding. Therefore we carry out in-depth code
analysis on some Android apps after sampling. We believe our study will help
developers select the most suitable obfuscation approach, and in the meantime
help researchers improve code analysis systems in the right direction
Undermining User Privacy on Mobile Devices Using AI
Over the past years, literature has shown that attacks exploiting the
microarchitecture of modern processors pose a serious threat to the privacy of
mobile phone users. This is because applications leave distinct footprints in
the processor, which can be used by malware to infer user activities. In this
work, we show that these inference attacks are considerably more practical when
combined with advanced AI techniques. In particular, we focus on profiling the
activity in the last-level cache (LLC) of ARM processors. We employ a simple
Prime+Probe based monitoring technique to obtain cache traces, which we
classify with Deep Learning methods including Convolutional Neural Networks. We
demonstrate our approach on an off-the-shelf Android phone by launching a
successful attack from an unprivileged, zeropermission App in well under a
minute. The App thereby detects running applications with an accuracy of 98%
and reveals opened websites and streaming videos by monitoring the LLC for at
most 6 seconds. This is possible, since Deep Learning compensates measurement
disturbances stemming from the inherently noisy LLC monitoring and unfavorable
cache characteristics such as random line replacement policies. In summary, our
results show that thanks to advanced AI techniques, inference attacks are
becoming alarmingly easy to implement and execute in practice. This once more
calls for countermeasures that confine microarchitectural leakage and protect
mobile phone applications, especially those valuing the privacy of their users
Recommended from our members
An Empirical Study on Android for Saving Non-shared Data on Public Storage
With millions of apps that can be downloaded from official or third-party
market, Android has become one of the most popular mobile platforms today.
These apps help people in all kinds of ways and thus have access to lots of
user's data that in general fall into three categories: sensitive data, data to
be shared with other apps, and non-sensitive data not to be shared with others.
For the first and second type of data, Android has provided very good storage
models: an app's private sensitive data are saved to its private folder that
can only be access by the app itself, and the data to be shared are saved to
public storage (either the external SD card or the emulated SD card area on
internal FLASH memory). But for the last type, i.e., an app's non-sensitive and
non-shared data, there is a big problem in Android's current storage model
which essentially encourages an app to save its non-sensitive data to shared
public storage that can be accessed by other apps. At first glance, it seems no
problem to do so, as those data are non-sensitive after all, but it implicitly
assumes that app developers could correctly identify all sensitive data and
prevent all possible information leakage from private-but-non-sensitive data.
In this paper, we will demonstrate that this is an invalid assumption with a
thorough survey on information leaks of those apps that had followed Android's
recommended storage model for non-sensitive data. Our studies showed that
highly sensitive information from billions of users can be easily hacked by
exploiting the mentioned problematic storage model. Although our empirical
studies are based on a limited set of apps, the identified problems are never
isolated or accidental bugs of those apps being investigated. On the contrary,
the problem is rooted from the vulnerable storage model recommended by Android.
To mitigate the threat, we also propose a defense framework
Recommended from our members
Vulnerable GPU Memory Management: Towards Recovering Raw Data from GPU
Abstract
According to previous reports, information could be leaked from GPU memory; however, the security implications of such a threat were mostly over-looked, because only limited information could be indirectly extracted through side-channel attacks. In this paper, we propose a novel algorithm for recovering raw data directly from the GPU memory residues of many popular applications such as Google Chrome and Adobe PDF reader. Our algorithm enables harvesting highly sensitive information including credit card numbers and email contents from GPU memory residues. Evaluation results also indicate that nearly all GPU-accelerated applications are vulnerable to such attacks, and adversaries can launch attacks without requiring any special privileges both on traditional multi-user operating systems, and emerging cloud computing scenarios