35 research outputs found

    Development and test of a spring-finger roller-type hot pepper picking header

    Get PDF
    In order to improve picking efficiency, performance and reduce harvesting costs, this study developed a spring-finger roller type hot pepper picking header. The picking header was mainly composed of a roller, spring-fingers, a steel frame, an upper cover plate, and transmission parts. According to the mechanical characteristics of the hot pepper, the picking structure model of hot pepper was developed based on SolidWorks. The movement law of the picking spring-finger was analyzed based on the working principle to select appropriate motion parameters of main factors. A prototype of hot pepper picking header was developed based on these selected parameters, and field experiments were carried out to study main factors affecting the harvesting effect. The rotation speed of the roller and the travel speed of picking machine were monitored by setting sensors. The test results were analyzed and optimized based on Central Composite Design (CCD) by using Design Expert. The orthogonal test results showed that: when roller rotation speed was 215.00 r⋅min−1, and travel speed was 3.59 km⋅h−1, the hot pepper picking header had the best harvest effect. The picking rate was 98.47%, and the breakage rate was 3.87%. The field experiment proved that the spring-finger roller type hot pepper picking header had a good picking effect

    Review of Material Parameter Calibration Method

    No full text
    The discrete element method and simulation analysis of the interaction between granular materials and implements provide a convenient and effective method for the optimal design of farming machinery. However, the parameter differences between different materials make discrete element simulation impossible to carry out directly. It is necessary to obtain the specific material parameters and contact parameters through parameter calibration of the simulation object, so as to make the simulation results more reliable. Parameter calibration mainly includes intrinsic parameter measurement, contact model selection, contact parameter selection, and parameter calibration. The test methods of the calibration test include the Plackett–Burman test and other methods of screening parameters with significant influence, and then selecting the optimal parameters through the climbing test, response surface analysis method, etc., and finally carrying out the regression analysis. This paper will describe the existing parameter measurement methods and parameter calibration methods and provide a reference for the scholars who study parameter calibration to carry out parameter calibration

    Review of Material Parameter Calibration Method

    No full text
    The discrete element method and simulation analysis of the interaction between granular materials and implements provide a convenient and effective method for the optimal design of farming machinery. However, the parameter differences between different materials make discrete element simulation impossible to carry out directly. It is necessary to obtain the specific material parameters and contact parameters through parameter calibration of the simulation object, so as to make the simulation results more reliable. Parameter calibration mainly includes intrinsic parameter measurement, contact model selection, contact parameter selection, and parameter calibration. The test methods of the calibration test include the Plackett–Burman test and other methods of screening parameters with significant influence, and then selecting the optimal parameters through the climbing test, response surface analysis method, etc., and finally carrying out the regression analysis. This paper will describe the existing parameter measurement methods and parameter calibration methods and provide a reference for the scholars who study parameter calibration to carry out parameter calibration

    Effects of the speed on the webbed foot kinematics of mallard (Anas platyrhynchos)

    No full text
    In this study, the effect of the speed on the webbed foot locomotion of the mallard was analyzed based on a considerable number of reliable indoor test data. Four adult male mallards were selected for analysis, and the locomotion speed of the mallard was controlled using the treadmill at an accurate and adjustable speed. The locomotion pattern of the webbed foot of the mallard at different speeds was recorded using a high-speed camera. The changes in the position and conformation of the webbed foot during locomotion on a treadmill were tracked and analyzed using Simi-Motion kinematics software. The results indicated that the stride length of the mallard increased, and the stance phase duration was shortened with the increase of the speed, whereas the swing phase duration did not vary significantly. The duty factor decreased with the increase of the mallard speed but not drop below to 0.5, because the mallards flew with their wings, or moved backward relative to the treadmill with the further increase of the speed. Using the energy method to further distinguish gait, and through the percentage of congruity analysis, it was found that between 0.73 and 0.93 m/s, the gait experienced a transition from walking to grounded running, with no significant changes in spatiotemporal parameters. At speeds between 0.93 and 1.6 m/s, mallards adopt a grounded running gait. The instantaneous changes of the tarsometatarso-phalangeal joint (TMTPJ) angle and the intertarsal joint (ITJ) angle at touch-down, mid-stance and lift-off concomitant with the change of the speed were examined with the TMTPJ and ITJ angle as the research objects. Moreover, the continuous changes of the joint angles were examined in a complete stride cycle. The result indicated that the increase of the speed will also make the TMTPJ and ITJ angle change ahead of time in a stride cycle, proving the shortened stance phase duration. The ITJ angle changed much more than the TMTPJ. Thus, the above result reveals that the mallard primarily responds with the increase of the speed by adjusting the ITJ, instead of the TMTPJ. The vertical displacement of the toe joint points and the toe joint angle was studied (ι joint angle is between the second toe and the third toe; β joint angle is between the third toe and the fourth toe) with a complete stride cycle as the research object. The distal phalanxes of the second, third and fourth toes first contacted the ground, and the proximal phalanx touched the ground in turn during the early stance phase duration of the mallard, as indicated by the result of this study. However, the toes got off the ground in turn from the proximal phalanxes when the mallard foot got off the ground. With the decrease of the interphalangeal ι and β joint angles, the foot web tended to be close and rapidly recovered before the next touch-down. The above result reveals that the webbed foot of the mallard is a coupling system that plays a role in the adjustment of speed

    Design and Experimental Study of a Biomimetic Pod-Pepper-Picking Drum Based on Multi-Finger Collaboration

    No full text
    In order to reduce ground drop loss during mechanical pepper picking and improve the net recovery rate, a drum snap finger picking device was designed. The picking device is mainly composed of a picking drum and auxiliary picking components; the picking finger arrangement was designed biomimetically and its structure and operating parameters were optimized by the DEM (discrete element method). According to the physical and mechanical characteristics of the pepper and the simplified three-dimensional model of the picking device, a virtual simulation model of the pepper-picking device was established using the EDEM software. Through simulation analysis and using the orthogonal test method, the main factors which affect the ground drop loss rate of pepper and their optimal parameter combination values were determined. The simulation results were verified by a pepper-picking field experiment. Orthogonal tests show that, when the picking drum speed (V′) is 210 rpm, the pepper-feeding speed (V″) is 1100 mm·s−1, the bending angle of each picking spring tooth (C) is 162°, and each group of circumferential fingers has rows, the picking device has a good picking effect. At this time, the ground drop loss rates in both the simulation and field test were 7.50% and 7.85%, respectively, and the drop error was only 4.46%, which was within the allowable range. The design form and parameter optimization simulation method in this paper provide an important reference for the design and optimization of pepper-harvesting machinery

    Study on bio-inspired feet based on the cushioning and shock absorption characteristics of the ostrich foot.

    No full text
    As the main actuator of high-speed running, the ostrich feet are highly capable of cushioning and shock absorption. In this study, based on the elastic modulus scales and assembly order of the 3rd toe soft tissues and the functions of the metatarsophalangeal (MTP) joint, we designed fourteen bio-inspired feet. The impact process on loose sand was simulated on the finite element software Abaqus. Also the stress distributions and deformations of each component of the bio-inspired feet were clarified. With the peak acceleration as the index, the cushioning performances of the bio-inspired feet were compared on both loose sand and solid ground through height-variable impact tests. The 15-15-15 HA (hardness unit) bio-inspired foot showed lower peak acceleration and thereby better cushioning performance, but larger deformation, less-uniform stress distribution and thereby lower stability than the 15-35-55 HA bio-inspired foot. In fact, the silicon rubbers with different hardness degrees (which simulate the elasticity modulus scales of the digital cushions, fascia and skin) and the spring mechanism (which simulates the functions of the MTP joint) work as an "integrated system" of cushioning and shock absorption

    Study on bio-inspired feet based on the cushioning and shock absorption characteristics of ostrich foot

    No full text
    The African ostrich (Struthio camelus) perennially living in deserts is outstanding with remarkable speed, exceptional endurance and continuous locomotion. As the main actuator of high-speed running, the ostrich feet possess excellent cushioning and shock absorption capabilities. In this study, based on the elastic modulus scales and assembly modes of soft tissues and the functions of the metatarsophalangeal (MTP) joint, eight bio-inspired feet were designed by an engineering method. With the peak acceleration as the index, the cushioning performances of different bio-inspired feet on loose sand or solid ground were compared through impact tests at different heights and verified by simulating the impact processes of the bio-inspired feet on loose sand on the finite element software Abaqus. Meanwhile, the stress distribution and deformation of each component of the bio-inspired feet were also clarified. The 15-15-15 HA (hardness unit) bio-inspired feet showed lower peak acceleration and thereby better cushioning performance, but larger deformation, less-uniform stress distributions and thereby lower stability than the 15-35-55 HA bio-inspired feet. Sensitivity analyses showed the cushioning capacity of the bio-inspired feet was comparable to that of the ostrich foot when the material (elastic modulus) and spring (stiffness coefficient) were properly selected. In fact, the silicon rubbers with different hardness levels which simulate the elasticity modulus scales of the toe pad, fascia and skin, and the spring mechanism which simulates the functions of the MTP joint, work as an “integrated system”of cushioning and shock absorption

    Investigating the mechanism of action of Yanghe Pingchuan Granule in the treatment of bronchial asthma based on bioinformatics and experimental validation

    No full text
    Background: Yanghe Pingchuan Granule (YPG) is a patented Chinese medicine developed independently by the Anhui Provincial Hospital of Traditional Chinese Medicine. For many years, it has been used for the treatment of asthma with remarkable clinical effects. However, the composition of YPG is complex, and its potential active ingredients and mechanism of action for the treatment of asthma are unknown. Materials and methods: In this study, we investigated the potential mechanism of action of YPG in the treatment of asthma through a combination of bioinformatics and in vivo experimental validation. We searched for active compounds in YPG and asthma targets from multiple databases and obtained common targets. Subsequently, a protein-protein interaction (PPI) network for compound disease was constructed using the protein interaction database for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, hematoxylin and eosin (H&E) staining, Masson staining, enzyme-linked immunosorbent assay (ELISA) analysis, immunofluorescence (IF) experiments, and Western blot (WB) experiments were performed to verify the possible mechanism of action of YPG for asthma treatment. Results: We obtained 72 active ingredients and 318 drug target genes that overlap with asthma. Serine/threonine-protein kinase (AKT1), tumor protein p53 (TP53), tumor necrosis factor (TNF), interleukin (IL)-6, IL-1β, vascular endothelial growth factor-A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), caspase-3 (CASP3), mitogen-activated protein kinase 3 (MAPK3) and epidermal growth factor receptor (EGFR) were the most relevant genes in the PPI network. KEGG analysis showed a high number of genes enriched for the nuclear factor kappa-B (NF-κB) signaling pathway. Animal experiments confirmed that YPG reduced inflammatory cell infiltration and down-regulated the expression of ovalbumin-induced inflammatory factors. Furthermore, YPG treatment decreased the protein expression of NFĸB1, nuclear factor kappa B kinase subunit beta (IKBKB), vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 2 (VEGFR2) in lung tissue. Conclusion: YPG has a positive effect on asthma by interfering with multiple targets. Furthermore, YPG may significantly inhibit the follicle-induced inflammatory response through the NF-ĸB signaling pathway
    corecore