38 research outputs found

    Localization of SUMO-modified Proteins Using Fluorescent Sumo-trapping Proteins

    Get PDF
    Here we are presenting a novel method to study the sumoylation of proteins and their sub-cellular localization in mammalian cells and nematode oocytes. This method utilizes a recombinant modified SUMO-trapping protein fragment, kmUTAG, derived from the Ulp1 SUMO protease of the stress-tolerant budding yeast Kluyveromyces marxianus. We have adapted the properties of the kmUTAG for the purpose of studying sumoylation in a variety of model systems without the use of antibodies. For the study of SUMO, KmUTAG has several advantages when compared to antibody-based approaches. This stress-tolerant SUMO-trapping reagent is produced recombinantly, it recognizes native SUMO isoforms from many species, and unlike commercially available antibodies it shows reduced affinity for free, unconjugated SUMO. Representative results shown here include the localization of SUMO conjugates in mammalian tissue culture cells and nematode oocytes

    emb-1 Encodes the APC16 Subunit of the Caenorhabditis elegans Anaphase-Promoting Complex

    Get PDF
    In the nematode Caenorhabditis elegans, temperature-sensitive mutants of emb-1 arrest as one-cell embryos in metaphase of meiosis I in a manner that is indistinguishable from embryos that have been depleted of known subunits of the anaphase-promoting complex or cyclosome (APC/C). Here we show that the emb-1 phenotype is enhanced in double mutant combinations with known APC/C subunits and suppressed in double mutant combinations with known APC/C suppressors. In addition to its meiotic function, emb-1 is required for mitotic proliferation of the germline. These studies reveal that emb-1 encodes K10D2.4, a homolog of the small, recently discovered APC/C subunit, APC16

    Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    Get PDF
    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex

    Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios

    Get PDF
    Asymmetric partitioning is an essential component of many developmental processes. As spermatogenesis concludes, sperm are streamlined by discarding unnecessary cellular components into cellular wastebags called residual bodies (RBs). During nematode spermatogenesis, this asymmetric partitioning event occurs shortly after anaphase II, and both microtubules and actin partition into a central RB. Here, we use fluorescence and transmission electron microscopy to elucidate and compare the intermediate steps of RB formation in Caenorhabditis elegans, Rhabditis sp. SB347 (recently named Auanema rhodensis) and related nematodes. In all cases, intact microtubules reorganize and move from centrosomal to non-centrosomal sites at the RB-sperm boundary whereas actin reorganizes through cortical ring expansion and clearance from the poles. However, in species with tiny spermatocytes, these cytoskeletal changes are restricted to one pole. Consequently, partitioning yields one functional sperm with the X-bearing chromosome complement and an RB with the other chromosome set. Unipolar partitioning may not require an unpaired X, as it also occurs in XX spermatocytes. Instead, constraints related to spermatocyte downsizing may have contributed to the evolution of a sperm cell equivalent to female polar bodies

    Gender- and gamete-specific patterns of X chromosome segregation in a three-gendered nematode

    Get PDF
    Meiosis is at the core of sexual reproduction and alterations to its program can have dramatic effects. In this study, we investigate the segregation pattern of the X chromosome in Auanema rhodensis, a three-gendered nematode. This species has an atypical pattern of X chromosome segregation during male spermatogenesis that results in the exclusive production of haplo-X sperm. Here we use a combination of genetic and cytological approaches to show that while XX females undergo conventional meiosis to produce mostly haplo-X oocytes, hermaphrodites undergo atypical meiosis to produce nullo-X oocytes and mostly diplo-X sperm. Gender- and gamete-specific alterations of the normal meiotic program include non-pairing of the X homologs and precocious separation of X chromatids. Given these intra-species, intra-individual and intra-gametogenesis variations in meiotic program of A. rhodensis, we argue that it is an ideal model to study the plasticity of meiosis and how it can be modulated

    Sex- and Gamete-Specific Patterns of X Chromosome Segregation in a Trioecious Nematode

    Get PDF
    Three key steps in meiosis allow diploid organisms to produce haploid gametes: (1) homologous chromosomes (homologs) pair and undergo crossovers; (2) homologs segregate to opposite poles; and (3) sister chromatids segregate to opposite poles. The XX/XO sex determination system found in many nematodes [1] facilitates the study of meiosis because variation is easily recognized [2, 3, 4]. Here we show that meiotic segregation of X chromosomes in the trioecious nematode Auanema rhodensis [5] varies according to sex (hermaphrodite, female, or male) and type of gametogenesis (oogenesis or spermatogenesis). In this species, XO males exclusively produce X-bearing sperm [6, 7]. The unpaired X precociously separates into sister chromatids, which co-segregate with the autosome set to generate a functional haplo-X sperm. The other set of autosomes is discarded into a residual body. Here we explore the X chromosome behavior in female and hermaphrodite meioses. Whereas X chromosomes segregate following the canonical pattern during XX female oogenesis to yield haplo-X oocytes, during XX hermaphrodite oogenesis they segregate to the first polar body to yield nullo-X oocytes. Thus, crosses between XX hermaphrodites and males yield exclusively male progeny. During hermaphrodite spermatogenesis, the sister chromatids of the X chromosomes separate during meiosis I, and homologous X chromatids segregate to the functional sperm to create diplo-X sperm. Given these intra-species, intra-individual, and intra-gametogenesis variations in the meiotic program, A. rhodensis is an ideal model for studying the plasticity of meiosis and how it can be modulated

    SPE-44 Implements Sperm Cell Fate

    Get PDF
    The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system

    Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    Get PDF
    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex
    corecore