33 research outputs found

    Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (<it>PLK1</it>) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy.</p> <p>Methods</p> <p>We examined the expression of <it>PLK1 </it>mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting <it>PLK1 </it>mRNA on tumor-initiating cells was evaluated using tumor sphere assays.</p> <p>Results</p> <p>Analysis of gene expression in two independent cohorts revealed that <it>PLK1 </it>mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (<it>SOX2</it>) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells.</p> <p>Conclusions</p> <p>Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation.</p

    Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study

    Get PDF
    Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1–3 arose in older children (median ages 5.2–14.0 years) and had intermediate to excellent survival (5-year OS of 68.0–100%), while Group RB and MYC PB patients were much younger (median age 1.3–1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age

    A prospective study of plasma nitrates following human heart transplantation: relevance to myocardial function

    No full text
    BackgroundNitric oxide (NO) has been shown to affect myocardial function in positive and negative inotropic ways. Expression of inducible nitric oxide synthase and release of nitric oxide into the circulation has been associated with acute rejection in animal studies. The role of NO and the associated myocardial dysfunction seen during acute rejection in humans has not been adequately defined. In a prospective sequential study, we have studied the relationship between plasma nitrate and biopsy-proven acute rejection, and systolic and diastolic function after heart transplantation.MethodsBiopsies were performed weekly and then fortnightly up to 12 weeks after transplantation and on clinical indication of rejection in 37 patients. Plasma nitrates were obtained on the morning of each biopsy (total 341). An echocardiogram was performed immediately prior to each biopsy in which the systolic parameters, ejection fraction (EF) and fractional shortening (fs), and the diastolic parameters, isovolumetric relaxation time (IVRT), mitral valve pressure half-time (MVPHT), mitral valve deceleration time (MVDT), e:a ratio, and a wave duration, were measured.ResultsPlasma-nitrate level showed no significant correlation with the systolic parameters, EF or fs, or with changes in EF or fs. No significant correlation was found between plasma-nitrate level and the diastolic parameters IVRT, MVPHT, MVDT, mitral valve a wave duration, or e:a ratio.ConclusionsThis study has shown no correlation between plasma nitrate and impaired systolic or diastolic function after heart transplantation. Instead there was a weak trend for elevated nitrate to be associated with better systolic function
    corecore