5 research outputs found

    A Revised Mechanism for the Kinugasa Reaction

    No full text
    Detailed kinetic analysis for the Cu­(I)-catalyzed Kinugasa reaction forming β-lactams has revealed an anomalous overall zero-order reaction profile, due to opposing positive and negative orders in nitrone and alkyne, respectively. Furthermore, the reaction displays a second-order dependence on the catalyst, confirming the critical involvement of a postulated bis-Cu complex. Finally, reaction progress analysis of multiple byproducts has allowed a new mechanism, involving a common ketene intermediate to be delineated. Our results demonstrate that β-lactam synthesis through the Kinugasa reaction proceeds via a cascade involving (3 + 2) cycloaddition, (3 + 2) cycloreversion, and finally (2 + 2) cycloaddition. Our new mechanistic understanding has resulted in optimized reaction conditions to dramatically improve the yield of the target β-lactams and provides the first consistent mechanistic model to account for the formation of all common byproducts of the Kinugasa reaction

    Tandem Reaction Progress Analysis as a Means for Dissecting Catalytic Reactions: Application to the Aza-Piancatelli Rearrangement

    No full text
    Continuing developments in the elucidation techniques of complex catalytic processes is of foremost importance to modern synthetic chemistry, and the identification of efficient synthetic techniques relies on precise, reliable, and adaptable methods to dissect the mechanism of a given transformation. Currently, methods of reaction development are grounded upon the systematic modification of specific variablessuch as temperature, time, concentration, etc.to account for and control the dynamic series of coupled equilibria within a catalytic environment. On the other hand, tandem reaction analytical methods that involve the concomitant use of different instruments to probe a reaction can provide time-resolved information regarding active chemical species and facilitate the interrogation and optimization of the system. Herein, we report our study applying tandem in situ ReactIR and HPLC-MS monitoring to the dysprosium­(III) triflate-catalyzed aza-Piancatelli rearrangement of 2-furylcarbinols, a reaction that grants access to <i>trans</i>-4,5-disubstituted cyclopentenonescommon motifs in important biologically relevant and natural compounds. With a prototype automated sampling apparatus, information was obtained about the intrinsic chemoselectivity of the reaction, and previously unseen intermediates were observed, allowing for a more detailed reaction mechanism to be substantiated. The advantages of applying this type of tandem measurement to study these types of systems are also discussed

    Mechanism of a No-Metal-Added Heterocycloisomerization of Alkynylcyclopropylhydrazones: Synthesis of Cycloheptane-Fused Aminopyrroles Facilitated by Copper Salts at Trace Loadings

    No full text
    A mechanistic study of a new heterocycloisomerization reaction that forms annulated aminopyrroles is presented. Density functional theory calculations and kinetic studies suggest the reaction is catalyzed by trace copper salts and that a <i>Z-</i> to <i>E</i>-hydrazone isomerization occurs through an enehydrazine intermediate before the rate-determining cyclization of the hydrazone onto the alkyne group. The aminopyrrole products are obtained in 36–93% isolated yield depending on the nature of the alkynyl substituent. A new automated sampling technique was developed to obtain robust mechanistic data

    Importance of Off-Cycle Species in the Acid-Catalyzed Aza-Piancatelli Rearrangement

    No full text
    The observed rate of reaction in the dysprosium triflate catalyzed aza-Piancatelli rearrangement is controlled by a key off-cycle binding between aniline and catalyst. Deconvoluting the role of these ancillary species greatly broadens our understanding of factors affecting the productive catalytic pathway. We demonstrate that the rate of reaction is controlled by initial competitive binding between the furylcarbinol and nitrogen nucleophile using either a Brønsted or Lewis acid catalyst and that the resulting rearrangement proceeds without involving the Brønsted and Lewis acid catalyst. This shows conclusively that the rate-controlling step and selectivity of reaction are decoupled

    Clinical Impact of an Antibiotic Stewardship Program at a Children’s Hospital

    No full text
    <p>Article full text</p> <p>The full text of this article can be found <b><a href="https://link.springer.com/article/10.1007/s40121-016-0139-5">here.</a></b></p> <p>Provide enhanced content for this article</p> <p>If you are an author of this publication and would like to provide additional enhanced content for your article then please contact <a href="http://www.medengine.com/Redeem/”mailto:[email protected]”"><b>[email protected]</b></a>.</p> <p>The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.</p> <p>Other enhanced features include, but are not limited to:</p> <ul> <li>Slide decks</li> <li>Videos and animations</li> <li>Audio abstracts</li> <li>Audio slides</li> </ul
    corecore