27 research outputs found

    Advancing the pathologic phenotype of giant axonal neuropathy: early involvement of the ocular lens

    Get PDF
    Abstract Giant axonal neuropathy (GAN; ORPHA: 643; OMIM# 256850) is a rare, hereditary, pediatric neurodegenerative disorder associated with intracellular accumulations of intermediate filaments (IFs). GAN knockout (KO) mouse models mirror the IF dysregulation and widespread nervous system pathology seen in human GAN. Validation of therapeutic efficacy and viral vector delivery systems with these GAN KO models has provided the springboard for the development of a viral vector being delivered intrathecally in an ongoing Phase I gene therapy clinical trial for the treatment of children with GAN ( https://clinicaltrials.gov/ct2/show/NCT02362438 ). During the course of a comprehensive pathologic characterization of the GAN KO mouse, we discovered the very early and unexpected involvement of the ocular lens. Light microscopy revealed the presence of intracytoplasmic inclusion bodies within lens epithelial cells. The inclusion bodies showed strong immunohistochemical positivity for glial fibrillary acidic protein (GFAP). We confirmed that intracytoplasmic inclusion bodies are also present within lens epithelial cells in human GAN. These IF inclusion bodies in lens epithelial cells are unique to GAN. Similar IF inclusion bodies in lens epithelial cells have not been reported previously in experimental animal models or human diseases. Since current paradigms in drug discovery and drug repurposing for IF-associated disorders are often hindered by lack of validated targets, our findings suggest that lens epithelial cells in the GAN KO mouse may provide a potential target, in vivo and in vitro, for evaluating drug efficacy and alternative therapeutic approaches in promoting the clearance of IF inclusions in GAN and other diseases characterized by intracellular IF accumulations

    Assessing Dysferlinopathy Patients Over Three Years With a New Motor Scale

    Get PDF
    The Jain COS Consortium.[Objective] Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD.[Methods] We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories.[Results] The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline.[Interpretation] The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967–978The estimated US $4 million needed to fund this study was provided by the Jain Foundation. (www.jain-foundation.org) The Jain COS consortium would like to thank the study participants and their families for their invaluable contribution. The John Walton Centre Muscular Dystrophy Research Centre is part of the MRC Centre for Neuromuscular Diseases (Grant number MR/K000608/1).Peer reviewe

    Expanding the muscle imaging spectrum in dysferlinopathy: description of an outlier population from the classical MRI pattern

    Get PDF
    © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Dysferlinopathy is a muscle disease characterized by a variable clinical presentation and is caused by mutations in the DYSF gene. The Jain Clinical Outcome Study for Dysferlinopathy (COS) followed the largest cohort of patients (n=187) with genetically confirmed dysferlinopathy throughout a three-year natural history study, in which the patients underwent muscle function tests and muscle magnetic resonance imaging (MRI). We previously described the pattern of muscle pathology in this population and established a series of imaging criteria for diagnosis. In this paper, we describe the muscle imaging and clinical features of a subgroup of COS participants whose muscle imaging results did not completely meet the diagnostic criteria. We reviewed 184 T1-weighted (T1w) muscle MRI scans obtained at the baseline visit of the COS study, of which 106 were pelvic and lower limb only and 78 were whole-body scans. We identified 116 of the 184 patients (63%) who did not meet at least one of the established imaging criteria. The highest number found of unmet criteria was four per patient. We identified 24 patients (13%) who did not meet three or more of the nine established criteria and considered them as “outliers”. The most common unmet criterion (27.3% of cases) was the adductor magnus being equally or more affected than the adductor longus. We compared the genetic, demographic, clinical and muscle function data of the outlier patients with those who met the established criteria and observed that the outlier patients had an age of disease onset that was significantly older than the whole group (29.3 vs 20.5 years, p=0.0001). This study expands the phenotypic muscle imaging spectrum of patients with dysferlinopathy and can help to guide the diagnostic process in patients with limb girdle weakness of unknown origin.The Jain Foundation provided an estimated $4 million USD to fund the COS study.Peer reviewe

    Table_2_Assessing the Relationship of Patient Reported Outcome Measures With Functional Status in Dysferlinopathy: A Rasch Analysis Approach.docx

    Get PDF
    Appendix B. Coinvestigators - The Jain COS Consortium.Dysferlinopathy is a muscular dystrophy with a highly variable functional disease progression in which the relationship of function to some patient reported outcome measures (PROMs) has not been previously reported. This analysis aims to identify the suitability of PROMs and their association with motor performance.Two-hundred and four patients with dysferlinopathy were identified in the Jain Foundation's Clinical Outcome Study in Dysferlinopathy from 14 sites in 8 countries. All patients completed the following PROMs: Individualized Neuromuscular Quality of Life Questionnaire (INQoL), International Physical Activity Questionnaire (IPAQ), and activity limitations for patients with upper and/or lower limb impairments (ACTIVLIMs). In addition, nonambulant patients completed the Egen Klassifikation Scale (EK). Assessments were conducted annually at baseline, years 1, 2, 3, and 4. Data were also collected on the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) and Performance of Upper Limb (PUL) at these time points from year 2. Data were analyzed using descriptive statistics and Rasch analysis was conducted on ACTIVLIM, EK, INQoL. For associations, graphs (NSAD with ACTIVLIM, IPAQ and INQoL and EK with PUL) were generated from generalized estimating equations (GEE). The ACTIVLIM appeared robust psychometrically and was strongly associated with the NSAD total score (Pseudo R2 0.68). The INQoL performed less well and was poorly associated with the NSAD total score (Pseudo R2 0.18). EK scores were strongly associated with PUL (Pseudo R2 0.69). IPAQ was poorly associated with NSAD scores (Pseudo R2 0.09). This study showed that several of the chosen PROMs demonstrated change over time and a good association with functional outcomes. An alternative quality of life measure and method of collecting data on physical activity may need to be selected for assessing dysferlinopathy.Peer reviewe

    Assessing dysferlinopathy patients over three years with a new motor scale

    Get PDF
    OBJECTIVE: Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD. METHODS: We collected a longitudinal series of functional assessments from 187 dysferlinopathy patients over three years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and non-ambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories. RESULTS: The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3-8 years post symptom onset at baseline. INTERPRETATION: The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinics practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy

    Advancing the pathologic phenotype of giant axonal neuropathy: early involvement of the ocular lens

    Get PDF
    Abstract Giant axonal neuropathy (GAN; ORPHA: 643; OMIM# 256850) is a rare, hereditary, pediatric neurodegenerative disorder associated with intracellular accumulations of intermediate filaments (IFs). GAN knockout (KO) mouse models mirror the IF dysregulation and widespread nervous system pathology seen in human GAN. Validation of therapeutic efficacy and viral vector delivery systems with these GAN KO models has provided the springboard for the development of a viral vector being delivered intrathecally in an ongoing Phase I gene therapy clinical trial for the treatment of children with GAN (https://clinicaltrials.gov/ct2/show/NCT02362438). During the course of a comprehensive pathologic characterization of the GAN KO mouse, we discovered the very early and unexpected involvement of the ocular lens. Light microscopy revealed the presence of intracytoplasmic inclusion bodies within lens epithelial cells. The inclusion bodies showed strong immunohistochemical positivity for glial fibrillary acidic protein (GFAP). We confirmed that intracytoplasmic inclusion bodies are also present within lens epithelial cells in human GAN. These IF inclusion bodies in lens epithelial cells are unique to GAN. Similar IF inclusion bodies in lens epithelial cells have not been reported previously in experimental animal models or human diseases. Since current paradigms in drug discovery and drug repurposing for IF-associated disorders are often hindered by lack of validated targets, our findings suggest that lens epithelial cells in the GAN KO mouse may provide a potential target, in vivo and in vitro, for evaluating drug efficacy and alternative therapeutic approaches in promoting the clearance of IF inclusions in GAN and other diseases characterized by intracellular IF accumulations
    corecore