39 research outputs found

    On the occurrence of type IV solar radio bursts in the solar cycle 24 and their association with coronal mass ejections

    Get PDF
    Solar activities, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, the association of type IV bursts with coronal mass ejections is still not well understood. In this article, we perform the first statistical study of type IV solar radio bursts in the solar cycle 24. Our study includes a total of 446 type IV radio bursts that occurred during this cycle. Our results show that a clear majority,∌81% of type IV bursts, were accompanied by CMEs, based on a temporal association with white-light CME observations. However,we found that only∌2.2% of the CMEs are accompanied by type IV radio bursts. We categorised the type IV bursts as moving or stationary based on their spectral characteristics and found that only∌18% of the total type IV bursts in this study were moving type IV bursts. Our study suggests that type IV bursts can occur with both ‘Fast’ (≄500 km/s) and ‘Slow’ (<500 km/s), and also both ‘Wide’(≄60◩) and ‘Narrow’ (<60◩) CMEs. However, the moving type IV bursts in our study were mostly associated with ‘Fast’ and ‘Wide’ CMEs (∌52%), similar to type II radio bursts. Contrary to type II bursts, stationary type IV bursts have a more uniform association with all CME types.Peer reviewe

    Conditions for electron-cyclotron maser emission in the solar corona

    Get PDF
    Context: The Sun is an active source of radio emission ranging from long duration radio bursts associated with solar flares and coronal mass ejections to more complex, short duration radio bursts such as solar S bursts, radio spikes and fibre bursts. While plasma emission is thought to be the dominant emission mechanism for most radio bursts, the electron-cyclotron maser (ECM) mechanism may be responsible for more complex, short-duration bursts as well as fine structures associated with long-duration bursts. Aims: We investigate the conditions for ECM in the solar corona by considering the ratio of the electron plasma frequency ωp to the electron-cyclotron frequency Ωe. The ECM is theoretically possible when ωp/ Ωe< 1. Methods: Two-dimensional electron density, magnetic field, plasma frequency, and electron cyclotron frequency maps of the off-limb corona were created using observations from SDO/AIA and SOHO/LASCO, together with potential field extrapolations of the magnetic field. These maps were then used to calculate ωp/Ωe and AlfvĂ©n velocity maps of the off-limb corona. Results: We found that the condition for ECM emission (ωp/ Ωe40 G and electron densities are >3 × 108 cm-3. In addition, we found comparatively high AlfvĂ©n velocities (>0.02c or >6000 km s-1) at heights <1.07 R⊙ within the active region. Conclusions: This demonstrates that the condition for ECM emission is satisfied within areas of the corona containing large magnetic fields, such as the core of a large active region. Therefore, ECM could be a possible emission mechanism for high-frequency radio and microwave bursts

    Type II radio bursts and their association with coronal mass ejections in solar cycles 23 and 24

    Full text link
    Metre wavelength type II solar radio bursts are believed to be the signatures of shock-accelerated electrons in the corona. Studying these bursts can give information about the initial kinematics, dynamics and energetics of CMEs in the absence of white-light observations. In this study, we investigate the occurrence of type II bursts in solar cycles 23 and 24 and their association with coronal mass ejections (CMEs). We also explore the possibility of occurrence of type II bursts in the absence of a CME. We performed statistical analysis of type II bursts that occurred between 200 - 25 MHz in solar cycle 23 and 24 and found the temporal association of these radio bursts with CMEs. We categorised the CMEs based on their linear speed and angular width, and studied the distribution of type II bursts with `fast' (speed ≄500km/sspeed ~\geq 500 km/s), `slow' (speed <500km/sspeed ~< 500 km/s), `wide' (width ≄60owidth ~\geq 60^o) and `narrow' (width <60owidth ~< 60^o) CMEs. We explored the type II bursts occurrence dependency with solar cycle phases. Our results suggest that type II bursts dominate at heights ≈1.7−2.3±0.3 R⊙\approx 1.7 - 2.3 \pm 0.3 ~R_{\odot} with a clear majority having an onset height around 1.7 ±0.3 R⊙\pm 0.3~R_{\odot} assuming the four-fold Newkirk model. The results indicate that most of the type II bursts had a white-light CME counterpart, however there were a few type II which did not have a clear CME association. There were more CMEs in cycle 24 than cycle 24. However, the number of type II radio bursts were less in cycle 24 compared to cycle 23. The onset heights of type IIs and their association with wide CMEs reported in this study indicate that the early CME lateral expansion may play a key role in the generation of these radio bursts.Comment: 17 pages, 8 figures, 4 tables, Accepted for publication in Astronomy & Astrophysic

    Loss-cone instability modulation due to a magnetohydrodynamic sausage mode oscillation in the solar corona

    Get PDF
    Solar flares often involve the acceleration of particles to relativistic energies and the generation of high-intensity bursts of radio emission. In some cases, the radio bursts can show periodic or quasiperiodic intensity pulsations. However, precisely how these pulsations are generated is still subject to debate. Prominent theories employ mechanisms such as periodic magnetic reconnection, magnetohydrodynamic (MHD) oscillations, or some combination of both. Here we report on high-cadence (0.25 s) radio imaging of a 228 MHz radio source pulsating with a period of 2.3 s during a solar flare on 2014-April-18. The pulsating source is due to an MHD sausage mode oscillation periodically triggering electron acceleration in the corona. The periodic electron acceleration results in the modulation of a loss-cone instability, ultimately resulting in pulsating plasma emission. The results show that a complex combination of MHD oscillations and plasma instability modulation can lead to pulsating radio emission in astrophysical environments.Peer reviewe

    Interferometric imaging with LOFAR remote baselines of the fine structures of a solar type-IIIb radio burst

    Get PDF
    Context. Solar radio bursts originate mainly from high energy electrons accelerated in solar eruptions like solar flares, jets, and coronal mass ejections. A sub-category of solar radio bursts with short time duration may be used as a proxy to understand wave generation and propagation within the corona.Aims. Complete case studies of the source size, position, and kinematics of short term bursts are very rare due to instrumental limitations. A comprehensive multi-frequency spectroscopic and imaging study was carried out of a clear example of a solar type IIIb-III pair.Methods. In this work, the source of the radio burst was imaged with the interferometric mode, using the remote baselines of the LOw Frequency ARray (LOFAR). A detailed analysis of the fine structures in the spectrum and of the radio source motion with imaging was conducted.Results. The study shows how the fundamental and harmonic components have a significantly different source motion. The apparent source of the fundamental emission at 26.56 MHz displaces away from the solar disk center at about four times the speed of light, while the apparent source of the harmonic emission at the same frequency shows a speed of <0.02 c. The source size of the harmonic emission observed in this case is smaller than that in previous studies, indicating the importance of the use of remote baselines.Peer reviewe

    Exploring the Circular Polarisation of Low-Frequency Solar Radio Bursts with LOFAR

    Get PDF
    The Sun is an active star that often produces numerous bursts of electromagnetic radiation at radio wavelengths. Low frequency radio bursts have recently been brought back to light with the advancement of novel radio interferometers. However, their polarisation properties have not yet been explored in detail, especially with the Low Frequency Array (LOFAR), due to difficulties in calibrating the data and accounting for instrumental leakage. Here, using a unique method to correct the polarisation observations, we explore the circular polarisation of different sub-types of solar type III radio bursts and a type I noise storm observed with LOFAR, which occurred during March-April 2019. We analysed six individual radio bursts from two different dates. We present the first Stokes V low frequency images of the Sun with LOFAR in tied-array mode observations. We find that the degree of circular polarisation for each of the selected bursts increases with frequency for fundamental emission, while this trend is either not clear or absent for harmonic emission. The type III bursts studied, that are part of a long-lasting type III storm, can have different senses of circular polarisation, occur at different locations and have different propagation directions. This indicates that the type III bursts forming a classical type III storm do not necessarily have a common origin, but instead they indicate the existence of multiple, possibly unrelated acceleration processes originating from solar minimum active regions.Peer reviewe

    Properties and magnetic origins of solar S-bursts

    Get PDF
    Context. Solar activity is often accompanied by solar radio emission, consisting of numerous types of solar radio bursts. At low frequencies (<100 MHz) radio bursts with short durations of milliseconds, such as solar S-bursts, have been identified. To date, their origin and many of their characteristics remain unclear. Aims. We report observations from the Ukrainian T-shaped Radio telescope, (UTR-2), and the LOw Frequency ARray (LOFAR) which give us new insight into their nature. Methods. Over 3000 S-bursts were observed on 9 July 2013 at frequencies of 17.4-83.1MHz during a period of low solar activity. Leading models of S-burst generation were tested by analysing the spectral properties of S-bursts and estimating coronal magnetic field strengths. Results. S-bursts were found to have short durations of 0.5-0.9 s. Multiple instruments were used to measure the dependence of drift rate on frequency which is represented by a power law with an index of 1.57. For the first time, we show a linear relation between instantaneous bandwidth and frequency over a wide frequency band. The flux calibration and high sensitivity of UTR-2 enabled measurements of their fluxes, which yielded 11 +/- 3 solar flux units (1 SFU equivalent to 10(4) Jy). The source particle velocities of S-bursts were found to be similar to 0.07 c. S-burst source heights were found to range from 1.3 R-circle dot to 2 R-circle dot. Furthermore, a contemporary theoretical model of S-burst generation was used to conduct remote sensing of the coronal magnetic field at these heights which yielded values of 0.9-5.8 G. Within error, these values are comparable to those predicted by various relations between magnetic field strength and height in the corona.Peer reviewe

    Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes

    Get PDF
    We report a detailed analysis of interplanetary flux ropes observed at Venus and subsequently at Earth's Lagrange L1 point between June 15 and 17, 2012. The observation points were separated by about 0.28 AU in radial distance and 5 degrees in heliographic longitude at this time. The flux ropes were associated with three coronal mass ejections (CMEs) that erupted from the Sun on June 12-14, 2012 (SOL2012-06-12, SOL2012-06-13, and SOL2012-06-14). We examine the CME-CME interactions using in-situ observations from the almost radially aligned spacecraft at Venus and Earth, as well as using heliospheric modeling and imagery. The June 14 CME reached the June 13 CME near the orbit of Venus and significant interaction occurred before they both reached Earth. The shock driven by the June 14 CME propagated through the June 13 CME and the two CMEs coalesced, creating the signatures of one large, coherent flux rope at L1. We discuss the origin of the strong interplanetary magnetic fields related to this sequence of events, the complexity of interpreting solar wind observations in the case of multiple interacting CMEs, and the coherence of the flux ropes at different observation points.Peer reviewe
    corecore