5 research outputs found

    Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease

    No full text
    There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies

    Thrombotic Thrombocytopenic Purpura in Interferon Beta-1a-Treated Patient Diagnosed with Relapsing-Remitting Multiple Sclerosis: A Case Report

    No full text
    Background: Secondary thrombotic thrombocytopenic purpura (TTP) due to interferon beta-1a intramuscular (im) treatment is an uncommon adverse effect with only a few cases in multiple sclerosis patients reported worldwide. TTP together with haemolytic uremic syndrome (HUS) are classic forms of thrombotic microangiopathy, characterized by small-vessel platelet micro-thrombi that manifest clinically in a similar manner. Most common signs and symptoms include bruises and ecchymosis, neurologic symptoms and renal impairment. Interferon beta-1a represents one of the first-line therapies for relapsing-remitting multiple sclerosis due to its accessibility and efficacy. Case presentation: A 36-year-old woman who was previously diagnosed with relapsing-remitting multiple sclerosis had received weekly intramuscular injections with beta-interferon-1a (Avonex 30 mcg). After 9 months of treatment, she presented bruises and ecchymosis on her limbs and torso, epistaxis, gingival bleeding aggravated within 48 h and a persistent headache that was non-responsive to common analgesics. Haematology tests revealed typical results for thrombotic microangiopathy, including severe thrombocytopenia (4000/mm3) and microangiopathic haemolytic anaemia with frequent schistocytes on the peripheral blood smear. Once the beta-interferon administration was ceased and upon the initiation of methylprednisolone, the symptoms remitted. Conclusions: In this case study, we portrayed the particular association between the remission phase of multiple sclerosis and the violent onset of interferon-induced thrombotic thrombocytopenic purpura

    Systemic light chain amyloidosis myopathy responsive to daratumumab monotherapy

    No full text
    International audienceBackground and purpose: Amyloid myopathy is a rare and severe manifestation of systemic light chain (AL) amyloidosis. Early diagnosis and staging are mandatory for optimal therapy, given the rapid progression of muscle weakness. Despite the efficacy of bortezomib-based treatment regimens, there is a lack of therapeutic alternatives in non-responsive patients. Method: The case report of a patient with systemic AL amyloidosis myopathy treated with daratumumab is presented. Results: A 70-year-old man displayed severe proximal muscle weakness which had developed over a 10-month period. Blood tests revealed an immunoglobulin A lambda monoclonal gammopathy, whilst muscle biopsy showed amyloid deposits within the arteriolar walls, confirming the diagnosis of amyloid myopathy associated with AL amyloidosis. Initial treatment with a bortezomib-based regimen showed no clinical or hematological improvement. After switching to daratumumab monotherapy, our patient achieved a favorable evolution with respect to functional muscle scoring and a complete hematological response. Conclusion: To our knowledge, this is the first case report of an amyloid myopathy showing a remarkable clinical improvement in response to daratumumab monotherapy. It thereby highlights the potential of daratumumab as a monotherapeutical approach to the treatment of amyloid myopathy complicating AL amyloidosis

    Neuronal Transmembrane Chloride Transport Has a Time-Dependent Influence on Survival of Hippocampal Cultures to Oxygen-Glucose Deprivation

    No full text
    Neuronal ischemia results in chloride gradient alterations which impact the excitatory–inhibitory balance, volume regulation, and neuronal survival. Thus, the Na+/K+/Cl− co-transporter (NKCC1), the K+/ Cl− co-transporter (KCC2), and the gamma-aminobutyric acid A (GABAA) receptor may represent therapeutic targets in stroke, but a time-dependent effect on neuronal viability could influence the outcome. We, therefore, successively blocked NKCC1, KCC2, and GABAA (with bumetanide, DIOA, and gabazine, respectively) or activated GABAA (with isoguvacine) either during or after oxygen-glucose deprivation (OGD). Primary hippocampal cultures were exposed to a 2-h OGD or sham normoxia treatment, and viability was determined using the resazurin assay. Neuronal viability was significantly reduced after OGD, and was further decreased by DIOA treatment applied during OGD (p < 0.01) and by gabazine applied after OGD (p < 0.05). Bumetanide treatment during OGD increased viability (p < 0.05), while isoguvacine applied either during or after OGD did not influence viability. Our data suggests that NKCC1 and KCC2 function has an important impact on neuronal viability during the acute ischemic episode, while the GABAA receptor plays a role during the subsequent recovery period. These findings suggest that pharmacological modulation of transmembrane chloride transport could be a promising approach during stroke and highlight the importance of the timing of treatment application in relation to ischemia-reoxygenation

    Melatonin–Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions

    No full text
    Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin’s most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community—namely, the gut microbiota, in multiple critical functions of the organism— has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions
    corecore