26 research outputs found

    Molecular Evolution of Human Immunodeficiency Virus Type 1 upon Transmission between Human Leukocyte Antigen Disparate Donor-Recipient Pairs

    Get PDF
    BACKGROUND: To address evolution of HIV-1 after transmission, we studied sequence dynamics in and outside predicted epitopes of cytotoxic T lymphocytes (CTL) in subtype B HIV-1 variants that were isolated from 5 therapy-naive horizontal HLA-disparate donor-recipient pairs from the Amsterdam Cohort Studies on HIV-1 infection and AIDS. METHODOLOGY/PRINCIPAL FINDINGS: In the first weeks after transmission, the majority of donor-derived mutations in and outside donor-HLA-restricted epitopes in Gag, Env, and Nef, were preserved in the recipient. Reversion to the HIV-1 subtype B consensus sequence of mutations in- and outside donor-HLA-restricted CTL epitopes, and new mutations away from the consensus B sequence mostly within recipient-HLA-restricted epitopes, contributed equally to the early sequence changes. In the subsequent period (1-2 years) after transmission, still only a low number of both reverting and forward mutations had occurred. During subsequent long-term follow-up, sequence dynamics were dominated by forward mutations, mostly (50-85%) in recipient-HLA-restricted CTL epitopes. At the end of long-term follow-up, on average 43% of the transmitted CTL escape mutations in donor-HLA-restricted epitopes had reverted to the subtype B consensus sequence. CONCLUSIONS/SIGNIFICANCE: The relatively high proportion of long-term preserved mutations after transmission points to a lack of back selection even in the absence of CTL pressure, which may lead to an accumulating loss of critical CTL epitopes. Our data are supportive for a continuous adaptation of HIV-1 to host immune pressures which may have implications for vaccine design

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    The evolution of human immunodeficiency virus type-1 (HIV-1) envelope molecular properties and coreceptor use at all stages of infection in an HIV-1 donor-recipient pair

    No full text
    To trace the evolutionary patterns underlying evolution of coreceptor use within a host, we studied an HIV-1 transmission pair involving a donor who exclusively harbored CCR5-using (R5) variants throughout his entire disease course and a recipient who developed CXCR4-using variants. Over time, R5 variants in the donor optimized coreceptor use, which was associated with an increased number of potential N-linked glycosylation sites (PNGS) and elevated V3 charge in the viral envelope. Interestingly, R5 variants that were transmitted to the recipient preserved the viral characteristics of this late stage genotype and phenotype. Following a selective sweep, CXCR4-using variants subsequently emerged in the recipient coinciding with a further increase in the number of PNGS and V3 charge in the envelope of R5 viruses. Although described in a single transmission pair, the transmission and subsequent persistence of R5 variants with late stage characteristics demonstrate the potential for coreceptor use adaptation at the population level. (C) 2011 Elsevier Inc. All rights reserve

    The evolution of human immunodeficiency virus type-1 (HIV-1) envelope molecular properties and coreceptor use at all stages of infection in an HIV-1 donor-recipient pair

    No full text
    To trace the evolutionary patterns underlying evolution of coreceptor use within a host, we studied an HIV-1 transmission pair involving a donor who exclusively harbored CCR5-using (R5) variants throughout his entire disease course and a recipient who developed CXCR4-using variants. Over time, R5 variants in the donor optimized coreceptor use, which was associated with an increased number of potential N-linked glycosylation sites (PNGS) and elevated V3 charge in the viral envelope. Interestingly, R5 variants that were transmitted to the recipient preserved the viral characteristics of this late stage genotype and phenotype. Following a selective sweep, CXCR4-using variants subsequently emerged in the recipient coinciding with a further increase in the number of PNGS and V3 charge in the envelope of R5 viruses. Although described in a single transmission pair, the transmission and subsequent persistence of R5 variants with late stage characteristics demonstrate the potential for coreceptor use adaptation at the population level.status: publishe

    Reconstructing the Dynamics of HIV Evolution within Hosts from Serial Deep Sequence Data

    Get PDF
    At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a 'fitness valley' separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points) from 8 untreated subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS). We used the known dates of sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days. HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30) months before the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range 5 to 25) months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant. Citation: Poon AFY, Swenson LC, Bunnik EM, Edo-Matas D, Schuitemaker H, et al. (2012) Reconstructing the Dynamics of HIV Evolution within Hosts from Serial Deep Sequence Data. PLoS Comput Biol 8(11): e1002753. doi:10.1371/journal.pcbi.100275

    Longitudinal Analysis of Early HIV-1-Specific Neutralizing Activity in an Elite Neutralizer and in Five Patients Who Developed Cross-Reactive Neutralizing Activity

    No full text
    We previously established that at 3 years postseroconversion, similar to 30% of HIV-infected individuals have cross-reactive neutralizing activity (CrNA) in their sera. Here we studied the kinetics with which CrNA develops and how these relate to the development of autologous neutralizing activity as well as viral escape and diversification. For this purpose, sera from five individuals with CrNA and one elite neutralizer that were obtained at three monthly intervals in the first year after seroconversion and at multiple intervals over the disease course were tested for neutralizing activity against an established multiclade panel of six viruses. The same serum samples, as well as sera from three individuals who lacked CrNA, were tested for their neutralizing activities against autologous clonal HIV-1 variants from multiple time points covering the disease course from seroconversion onward. The elite neutralizer already had CrNA at 9.8 months postseroconversion, in contrast with the findings for the other five patients, in whom CrNA was first detected at 20 to 35 months postseroconversion and peaked around 35 months postseroconversion. In all patients, CrNA coincided with neutralizing activity against autologous viruses that were isolated <12 months postseroconversion, while viruses from later time points had already escaped autologous neutralizing activity. Also, the peak in gp160 sequence diversity coincided with the peak of CrNA titers. Individuals who lacked CrNA had lower peak autologous neutralizing titers, viral escape, and sequence diversity than individuals with CrNA. A better understanding of the underlying factors that determine the presence of CrNA or even an elite neutralizer phenotype may aid in the design of an HIV-1 vaccin

    Two-dimensional histograms illustrating the distributions of g2p FPR predictions across all replicate ancestral reconstructions on the maximum credibility tree.

    No full text
    <p>The -axis corresponds to time intervals from to the first positive MT-2 assay (), rescaled for each subject. The -axis corresponds to the log-transformed FPR predictions for the ancestral sequences. Both axes were partitioned into 25 bins. Each cell is coloured with respect to its FPR value with opacity proportional to the square root of the number of data points in the corresponding bins, normalized by the total number of points in the time interval.</p

    PER.C6(®) cells as a serum-free suspension cell platform for the production of high titer poliovirus: a potential low cost of goods option for world supply of inactivated poliovirus vaccine

    No full text
    There are two highly efficacious poliovirus vaccines: Sabin's live-attenuated oral polio vaccine (OPV) and Salk's inactivated polio vaccine (IPV). OPV can be made at low costs per dose and is easily administrated. However, the major drawback is the frequent reversion of the OPV vaccine strains to virulent poliovirus strains which can result in Vaccine Associated Paralytic Poliomyelitis (VAPP) in vaccinees. Furthermore, some OPV revertants with high transmissibility can circulate in the population as circulating Vaccine Derived Polioviruses (cVDPVs). IPV does not convey VAPP and cVDPVs but the high costs per dose and insufficient supply have rendered IPV an unfavorable option for low and middle-income countries. Here, we explored whether the human PER.C6(®) cell-line, which has the unique capability to grow at high density in suspension, under serum-free conditions, could be used as a platform for high yield production of poliovirus. PER.C6(®) cells supported replication of all three poliovirus serotypes with virus titers ranging from 9.4 log(10) to 11.1 log(10)TCID(50)/ml irrespective of the volume scale (10 ml in shaker flasks to 2 L in bioreactors). This production yield was 10-30 fold higher than in Vero cell cultures performed here, and even 100-fold higher than what has been reported for Vero cell cultures in literature [38]. In agreement, the D-antigen content per volume PER.C6(®)-derived poliovirus was on average 30-fold higher than Vero-derived poliovirus. Interestingly, PER.C6(®) cells produced on average 2.5-fold more D-antigen units per cell than Vero cells. Based on our findings, we are exploring PER.C6(®) as an interesting platform for large-scale production of poliovirus at low costs, potentially providing the basis for global supply of an affordable IP

    Simulated trajectories of genotype frequencies (solid and dashed lines) and population-level coreceptor usage phenotype (shaded regions) under the fitness valley and gradual models of HIV coreceptor usage evolution.

    No full text
    <p>Simulations were generated under a five-allele Moran model with mortality selection <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002753#pcbi.1002753-Muirhead1" target="_blank">[42]</a>, effective population size , forward mutation rate of per replication, and fitness vectors of (1, 1.025, 1.05, 1.075, 1.1) and (1, 0.999, 0.999, 0.999, 1.1) corresponding to gradual and valley landscapes, respectively. Note that the relatively rapid and complete fixation of the fifth variant is partly due to the model assumption of no back mutation, and is not consistent with the observation that CXCR4-using variants tend to remain a minority species in HIV infections.</p
    corecore