4 research outputs found

    Passiflora cincinnata

    Get PDF
    Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson’s disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD

    Accessible protocol for practice classroom about physical and chemical factors that affect the biomembranes integrity

    No full text
    The aim of the current work is to review a protocol used in practical classes to demonstrate some factors that affect biomembrane integrity. Sugar-beet fragments were utilized as the experimental model as membrane damage could be visualized by leakage of betacyanins, hydrophilic pigments accumulated in the cell vacuoles. The tests were carried out as discrete experiments utilizing physical agents and chemical products present in the student daily routine. To test the effect of temperature, sugar-beet fragments were submitted to heat, cold or both at different times of exposition. When chemical products were tested, sugar-beet fragments were exposed to organic solvents (common alcohol and acetone) or polar and amphipathic substances (disinfectant, detergent, hydrogen peroxide, and sodium hypochlorite). The obtained results were discussed in terms of the capacity of the physical and chemical factors to cause membrane damage. The review of this protocol using reagents that are present in the student daily routine were able to demonstrate clearly the effect of the different tested factors, allowing the utilization of this practical class under limited conditions
    corecore