16,204 research outputs found

    Market for compilation, review, and audit services; Auditing research monograph, 4

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1012/thumbnail.jp

    The opposites task: Using general rules to test cognitive flexibility in preschoolers

    Get PDF
    A brief narrative description of the journal article, document, or resource. Executive functions play an important role in cognitive development, and during the preschool years especially, children's performance is limited in tasks that demand flexibility in their behavior. We asked whether preschoolers would exhibit limitations when they are required to apply a general rule in the context of novel stimuli on every trial (the "opposites" task). Two types of inhibitory processing were measured: response interference (resistance to interference from a competing response) and proactive interference (resistance to interference from a previously relevant rule). Group data show 3-year-olds have difficulty inhibiting prepotent tendencies under these conditions, whereas 5-year-olds' accuracy is near ceiling in the task. (Contains 4 footnotes and 1 table.

    On the mechanism for breaks in the cosmic ray spectrum

    Full text link
    The proof of cosmic ray (CR) origin in supernova remnants (SNR) must hinge on full consistency of the CR acceleration theory with the observations; direct proof is impossible because of the orbit stochasticity of CR particles. Recent observations of a number of galactic SNR strongly support the SNR-CR connection in general and the Fermi mechanism of CR acceleration, in particular. However, many SNR expand into weakly ionized dense gases, and so a significant revision of the mechanism is required to fit the data. We argue that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by \emph{exactly one power}. The spectral break is caused by a partial evanescence of Alfven waves that confine particles to the accelerator. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated. Using the recent Fermi spacecraft observation of the SNR W44 as an example, we demonstrate that the parent proton spectrum is a classical test particle power law E2\propto E^{-2}, steepening to E3E^{-3} at Ebr7GeVE_{br}\approx7GeV.Comment: APS talk to appear in PoP, 4 figure

    A cross‐faculty simulation model for authentic learning

    Get PDF
    This paper proposes a cross‐faculty simulation model for authentic learning that bridges the gap between short group‐based simulations within the classroom and longer individual placements in professional working contexts. Dissemination of the model is expected to widen the use of authentic learning approaches in higher education (HE). The model is based on a cross‐faculty project in which UK HE students acted as professional developers to produce prototype educational games for academic clients from other subject areas. Perceptions about the project were obtained from interviews with project participants. The stakeholders believed the cross‐faculty simulation to be a motivating learning experience, whilst identifying possible improvements. To evaluate whether the authenticity of the student–client relationship could be improved, the interview data were compared to four themes for authentic learning described by Rule in 2006. The data supported Rule’s themes, whilst highlighting the added value gained from meta‐awareness of the simulation as a learning opportunity

    Axial Symmetry and Rotation in the SiO Maser Shell of IK Tauri

    Full text link
    We observed v=1, J=1-0 43-GHz SiO maser emission toward the Mira variable IK Tauri (IK Tau) using the Very Long Baseline Array (VLBA). The images resulting from these observations show that SiO masers form a highly elliptical ring of emission approximately 58 x 32 mas with an axial ratio of 1.8:1. The major axis of this elliptical distribution is oriented at position angle of ~59 deg. The line-of-sight velocity structure of the SiO masers has an apparent axis of symmetry consistent with the elongation axis of the maser distribution. Relative to the assumed stellar velocity of 35 km/s, the blue- and red-shifted masers were found to lie to the northwest and southeast of this symmetry axis respectively. This velocity structure suggests a NW-SE rotation of the SiO maser shell with an equatorial velocity, which we determine to be ~3.6 km/s. Such a NW-SE rotation is in agreement with a circumstellar envelope geometry invoked to explain previous water and OH maser observations. In this geometry, water and OH masers are preferentially created in a region of enhanced density along the NE-SW equator orthogonal to the rotation/polar axis suggested by the SiO maser velocities.Comment: 17 Pages, 4 figures (2 color); accepted for publication in Ap

    Nonlinear shock acceleration beyond the Bohm limit

    Full text link
    We suggest a physical mechanism whereby the acceleration time of cosmic rays by shock waves can be significantly reduced. This creates the possibility of particle acceleration beyond the knee energy at ~10^15eV. The acceleration results from a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to the knee momentum at p ~ p_*. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is thus determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path (m.f.p.). The velocity gradient is, in turn, set by the knee-particles at p ~ p_* as having the dominant contribution to the CR pressure. Since it is independent of the m.f.p., the acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The reason for the knee formation at p ~ p_* is that particles with p>pp > p_* are effectively confined to the shock precursor only while they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This structure of the momentum space is due to the character of the scattering magnetic irregularities. They are formed by a train of shock waves that naturally emerge from unstably growing and steepening magnetosonic waves or as a result of acoustic instability of the CR precursor. These losses steepen the spectrum above the knee, which also prevents the shock width from increasing with the maximum particle energy.Comment: aastex, 13 eps figure

    On the Structure and Scale of Cosmic Ray Modified Shocks

    Full text link
    Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought to develop CR precursors. The length of such precursor LpL_{p} is believed to be set by the ratio of the CR mean free path λ\lambda to the shock speed, i.e., Lpcλ/Vshcrg/VshL_{p}\sim c\lambda/V_{sh}\sim cr_{g}/V_{sh}, which is formally independent of the CR pressure PcP_{c}. However, the X-ray observations of supernova remnant shocks suggest that the precursor scale may be significantly shorter than LpL_{p} which would question the above estimate unless the magnetic field is strongly amplified and the gyroradius rgr_{g} is strongly reduced over a short (unresolved) spatial scale. We argue that while the CR pressure builds up ahead of the shock, the acceleration enters into a strongly nonlinear phase in which an acoustic instability, driven by the CR pressure gradient, dominates other instabilities (at least in the case of low β\beta plasma). In this regime the precursor steepens into a strongly nonlinear front whose size scales with \emph{the CR pressure}as LfLp(Ls/Lp)2(Pc/Pg)2L_{f}\sim L_{p}\cdot(L_{s}/L_{p})^{2}(P_{c}/P_{g})^{2}, where LsL_{s} is the scale of the developed acoustic turbulence, and Pc/PgP_{c}/P_{g} is the ratio of CR to gas pressure. Since LsLpL_{s}\ll L_{p}, the precursor scale reduction may be strong in the case of even a moderate gas heating by the CRs through the acoustic and (possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC

    Notch/Delta signaling constrains reengineering of pro-T cells by PU.1

    Get PDF
    PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment

    The PML-RAR alpha transcript in long-term follow-up of acute promyelocytic leukemia patients

    Get PDF
    Background and Objectives. Detection of PML-RAR alpha transcripts by RT-PCR is now established as a rapid and sensitive method for diagnosis of acute promyelocytic leukemia (APL), Although the majority of patients in longterm clinical remission are negative by consecutive reverse transcription polymerase chain reaction (RT-PCR) assays, negative tests are still observed in patients who ultimately relapse. Conversion from negative to positive PCR has been observed after consolidation and found to be a much stronger predictor of relapse. This study reports on 47 APL patients to determine the correlation between minimal residual disease (MRD) status and clinical outcome in our cohort of patients. Design and Methods. The presence of PML-RAR alpha t transcripts was investigated in 47 APL patients (37 adults and 10 children) using a semi-nested reverse transcriptase-polymerase chain reaction to evaluate the prognostic value of RT-PCR tests. Results. All patients achieved complete clinical remission (CCR) following induction treatment with all-trans retinoic acid (ATRA) and chemotherapy (CHT) or ATRA alone. Patients were followed up between 2 and 117.6 months (median: 37 months). Relapses occurred in 11 patients (9 adults and 2 children) between 11.4 and 19 months after diagnosis (median: 15.1 months) while 36 patients (28 adults and 8 children) remained in CCR, Seventy-five percent of patients carried the PML-RARa long isoform (bcr 1/2) which also predominated among the relapsed cases (9 of 11) but did not associate with any adverse outcome (p = 0.37), For the purpose of this analysis, minimal residual disease tests were clustered into four time-intervals: 0-2 months, 3-5 months, 5-9 months and 10-24 months. Interpretation and Conclusions. Children showed persisting disease for longer than adults during the first 2 months of treatment, At 2 months, 10 (50%) of 20 patients who remained in CCR and 4 (80%) of 5 patients who subsequently relapsed were positive. Patients who remained in CCR had repeatedly negative results beyond 5.5 months from diagnosis. A positive MRD test preceded relapse in 3 of 4 tested patients. The ability of a negative test to predict CCR (predictive negative value, PNV) was greater after 6 months (> 83%), while the ability of a positive test to predict relapse (predictive positive value, PPV) was most valuable only beyond 10 months (100%). This study (i) highlights the prognostic value of RT-PCR monitoring after treatment of APL patients but only from the end of treatment, (ii) shows an association between conversion to a positive test and relapse and (iii) suggests that PCR assessments should be carried out at 3-month intervals to provide a more accurate prediction of hematologic relapses but only after the end of treatment, (C) 2001, Ferrata Storti Foundatio
    corecore