10,662 research outputs found

    Dynamics of a 1-D model for the emergence of the plasma edge shear flow layer with momentum conserving Reynolds stress

    Full text link
    A one-dimensional version of the second-order transition model based on the sheared flow amplification by Reynolds stress and turbulence supression by shearing is presented. The model discussed in this paper includes a form of the Reynolds stress which explicitly conserves momentum. A linear stability analysis of the critical point is performed. Then, it is shown that the dynamics of weakly unstable states is determined by a reduced equation for the shear flow. In the case in which the flow damping term is diffusive, the stationary solutions are those of the real Ginzburg-Landau equation.Comment: 21 pages, 8 figure

    Modern theory of Fermi acceleration: a new challenge to plasma physics

    Get PDF
    One of the main features of astrophysical shocks is their ability to accelerate particles to extremely high energies. The leading acceleration mechanism, the diffusive shock acceleration is reviewed. It is demonstrated that its efficiency critically depends on the injection of thermal plasma into acceleration which takes place at the subshock of the collisionless shock structure that, in turn, can be significantly smoothed by energetic particles. Furthermore, their inhomogeneous distribution provides free energy for MHD turbulence regulating the subshock strength and injection rate. Moreover, the MHD turbulence confines particles to the shock front controlling their maximum energy and bootstrapping acceleration. Therefore, the study of the MHD turbulence in a compressive plasma flow near a shock is a key to understanding of the entire process. The calculation of the injection rate became part of the collisionless shock theory. It is argued that the further progress in diffusive shock acceleration theory is impossible without a significant advance in these two areas of plasma physics.Comment: 12 pages, 4 figures, invited talk at APS/ICPP, Quebec 2000, to appear in Phys. of Plasma

    Reader-Writer Exclusion Supporting Upgrade and Downgrade with Reader-Priority

    Get PDF
    The Reader-Writer Exclusion problem seeks to provide a lock that protects some critical section of code for two classes of processes, readers and writers, where multiple readers are permitted to hold the lock at a time, but only one writer can hold the lock to the exclusion of all other processes. The difficulties in solving this problem lie not only in developing a good algorithm, but in rigorously formulating desirable properties for such an algorithm to have. Recently, Bhatt and Jayanti accomplished both of these tasks for several variants of the Reader-Writer Exclusion problem. We seek to extend their work by augmenting one of their algorithms (the one giving readers priority over writers) with the notions of upgrading and downgrading. We augment the algorithm by allowing processes in the critical section that are only permitted to read to attempt to acquire permission to write by upgrading, and by allowing processes that are permitted to write to relinquish their permission to write--but still remain in the critical section as readers--by downgrading

    Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions

    Get PDF
    The influence of various kinetic effects (e.g. Landau damping, diffusive and collisional dissipation, and finite Larmor radius terms) on the nonlinear evolution of finite amplitude Alfvenic wave trains in a finite-beta environment is systematically investigated using a novel, kinetic nonlinear Schrodinger (KNLS) equation. The dynamics of Alfven waves is sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. Numerical solution for the case with Landau damping reveals the formation of dissipative structures, which are quasi-stationary, S-polarized directional (and rotational) discontinuities which self-organize from parallel propagating, linearly polarized waves. Parallel propagating circularly polarized packets evolve to a few circularly polarized Alfven harmonics on large scales. Stationary arc-polarized rotational discontinuities form from obliquely propagating waves. Collisional dissipation, even if weak, introduces enhanced wave damping when beta is very close to unity. Cyclotron motion effects on resonant particle interactions introduce cyclotron resonance into the nonlinear Alfven wave dynamics.Comment: 38 pages (including 23 figures and 1 table

    Hadronic Gamma Rays from Supernova Remnants

    Get PDF
    A gas cloud near a supernova remnant (SNR) provides a target for pp-collisions leading to subsequent gamma-ray emission through neutral pion decay. The assumption of a power-law ambient spectrum of accelerated particles with index near -2 is usually built into models predicting the spectra of very-high energy (VHE) gamma-ray emission from SNRs. However, if the gas cloud is located at some distance from the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with the injection energy gradually decreasing as the SNR ages. In the GLAST energy range the gamma-ray spectrum resulting from particle interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.Comment: 4 pages, 3 figures. Contribution to the 30th ICRC, Merida, Mexico, 2007 (final version

    Fast Zonal Field Dynamo in Collisionless Kinetic Alfven Wave Turbulence

    Get PDF
    The possibility of fast dynamo action by collisionless kinetic Alfven Wave turbulence is demonstrated. The irreversibility necessary to lock in the generated field is provided by electron Landau damping, so the induced electric field does not vanish with resistivity. Mechanisms for self-regulation of the system and the relation of these results to the theory of alpha quenching are discussed. The dynamo-generated fields have symmetry like to that of zonal flows, and thus are termed zonal fields

    Influence of zonal flows on unstable drift modes in ETG turbulence

    Full text link
    The linear instability of the electron temperature gradient (ETG) driven modes in the presence of zonal flows is investigated. Random and deterministic coscos - like profiles of the zonal flow are considered. It is shown that the presence of shearing by zonal flows can stabilize the linear instability of ETG drift modes
    • …
    corecore