
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-2-2011

Reader-Writer Exclusion Supporting Upgrade and Downgrade with Reader-Writer Exclusion Supporting Upgrade and Downgrade with

Reader-Priority Reader-Priority

Michael I. Diamond
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Diamond, Michael I., "Reader-Writer Exclusion Supporting Upgrade and Downgrade with Reader-Priority"
(2011). Dartmouth College Undergraduate Theses. 69.
https://digitalcommons.dartmouth.edu/senior_theses/69

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/69?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR2011-683

Reader-Writer Exclusion Supporting Upgrade and
Downgrade with Reader-Priority

Michael Diamond

Thesis Advisor: Prasad Jayanti

June 2, 2011

Abstract

The Reader-Writer Exclusion problem [1] seeks to provide a lock that protects some critical
section of code for two classes of processes, readers and writers, where multiple readers are
permitted to hold the lock at a time, but only one writer can hold the lock to the exclusion
of all other processes. The difficulties in solving this problem lie not only in developing a
good algorithm, but in rigorously formulating desirable properties for such an algorithm to
have. Recently, Bhatt and Jayanti accomplished both of these tasks for several variants of the
Reader-Writer Exclusion problem [2][3]. We seek to extend their work by augmenting one of
their algorithms (the one giving readers priority over writers) with the notions of upgrading
and downgrading. We augment the algorithm by allowing processes in the critical section
that are only permitted to read to attempt to acquire permission to write by upgrading, and by
allowing processes that are permitted to write to relinquish their permission to write–but still
remain in the critical section as readers–by downgrading.

Contents
1 Introduction 1

2 The Model 1
2.1 Remote Memory References and the Cache-Coherent Model 2
2.2 The Readers-Writers Problem with Upgrade and Downgrade 3
2.3 Properties of the Original Algorithm . 5
2.4 Desirable Properties for an Algorithm with Upgrade and Downgrade 6

3 A Single-Writer Reader-Priority Algorithm with Upgrade and Downgrade 8
3.1 Restrictions on Procedures . 10
3.2 Informal Description of the Algorithm . 10

4 Proof of Correctness 12
4.1 Invariants of the Algorithm . 13

4.1.1 Notation Used in the Invariants . 13
4.2 Proof of the Invariants . 16
4.3 Proof of Theorem 1 . 30

5 Extension to Multi-Writer Algorithm 35

6 Model Checking 35

List of Figures
1 Definition of operations F&A and CAS as defined by Bhatt in his paper [4]. 2
2 Single-Writer Multi-Reader Algorithm satisfying Reader Priority with Upgrade

and Downgrade. Code for process with pid i. 9
3 Mapping of process types to procedures and PC values. 10
4 Invariants comprising I. 16

ii

1 Introduction
Reader-Writer Exclusion is a prevalent problem in computer science first formulated by Courtois,
Heymans, and Parnas [1]. The problem is an extension of the basic Mutual Exclusion problem
formulated by Dijkstra [5]. The idea is that there is some critical section of code that we want to
restrict access to in some way. In Mutual Exclusion, we allow only a single process in this critical
section at any one time. However, this is not always desirable. There are many scenarios where we
want to allow for concurrent read operations, but prevent read operations from being concurrent
with write operations and write operations from being concurrent with other write operations.
For example, database software might want to allow concurrent transactions that consist only of
reading rows, but restrict concurrent transactions where rows are changed. Similarly, file I/O could
benefit from the ability to have multiple concurrent readers without the interference of a writer.

While the problem is simple to describe at a high-level, rigorously specifying desirable prop-
erties can be more complex. Lamport made considerable advances in this regard when he revisited
Dijkstra’s Mutual Exclusion problem and introduced the notion of the “doorway” to talk about
precedence [6]. More recently, Bhatt and Jayanti rigorously formulated good properties and pro-
vided algorithms that satisfy them for several variants of the Reader-Writer Exclusion problem
[2][3].

Bhatt and Jayanti’s paper provides an asymptotically optimal solution to this problem with
a constant number of remote memory references and many other desirable properties. In this
paper, we will build on their work by adding functionality to their algorithm. In particular, we
will add the ability for processes to change from being a reader to a writer (“upgrading”) and vice
versa (“downgrading”) after they have acquired the lock. We will consider only the variant of
Reader-Writer Exclusion where readers have priority over writers. Informally, this means that if
any readers want to acquire the lock when a writer doesn’t have it, they should succeed, even if a
writer has been waiting for it for a long time. We will formulate new properties to define desirable
characteristics of upgrading and downgrading, and we will modify some of the existing properties
to accommodate these changes. We will then propose an algorithm that satisfies these properties
and prove its correctness.

2 The Model
The environment consists of a set of processes with distinct identities (pids) which come from a
set PID. Each process has a set of local variables accessible only by that process. In addition,
there is a set of shared variables that all processes can access. Our algorithm requires the following
atomic operations on these shared variables: read, write, fetch&add, compare&swap. The read
and write operations are self-explanatory. The precise definitions of the fetch&add (F&A) and
compare&swap (CAS) operations are provided in Figure 1.

1

• F&A(C, d) behaves as follows: if C’s current value is c, C is assigned c+d and c is returned.

• CAS(X, u, v) behaves as follows: if X’s current value is u, X is assigned v and true is
returned; otherwise, X is unchanged and false is returned.

Figure 1: Definition of operations F&A and CAS as defined by Bhatt in his paper [4].

In addition to local variables, each process also has a program counter which indicates the next
instruction that the process will execute. The local state of a process is given by the values of its
local variables and its program counter. The configuration of the system as a whole is given by the
local state of each process and the values of the shared variables. An algorithm specifies a program
for each process and an initial configuration.

A step is a triple (C, p, C ′), where C is a configuration, p is a process, and C ′ is the configuration
after p executes the instruction at its program counter. We call C the start configuration, C ′ the end
configuration, and we say that p has taken a step. A run from a configuration C0 is a list σ of steps
such that the start configuration of the first step in σ is C0, and for each pair of consecutive steps
(Ca, p, Cb), (Cc, p′, Cd) ∈ σ, Cb = Cc. A run is a run from the initial configuration of the algorithm.
A configuration C is reachable if C is the initial configuration or if there exists a finite run σ such
that C is the end configuration of some step in σ. We assign a time t to each step s in a run σ such
that for steps s and s′, t(s) < t(s′) if and only if s occurs before s′ in σ. We say that a process p
crashes in an infinite run σ if there exists a reachable configuration C in σ such that p does not take
any steps after C.

2.1 Remote Memory References and the Cache-Coherent Model
For reasons detailed by Bhatt and Jayanti [2], our algorithm considers only the cache-coherent
(CC) model of memory references. In the CC model, shared variables are stored in global memory
separate from any individual process. Each process has a local cache wherein it can store copies
of shared variables. A distinction is made between local and remote memory references (RMR).
Intuitively, any time a process accesses a local variable or a variable in its cache, that is a local
memory reference. When accessing a shared variable, it may or may not be a remote reference
depending on whether the operation the process performs modifies the variable or not and whether
or not the process has a copy of the shared variable in its cache.

We divide operations into read operations (read) and update operations (write, fetch&add,
compare&swap). We then determine whether a process has a copy of a shared variable in its cache
as follows: if a process performs a read operation on a shared variable X at time t and performs
another read operation on X at time t′ > t, then X is considered to be in the process’s cache at t′

if no process performed an update operation on X at any time t′′ such that t < t′′ < t′. Note that
whether the update operation actually changes the value of the shared variable is irrelevant: even a
failed compare&swap operation by a process p on a variable X invalidates the cached value of X
for every process. We can then formally define a remote memory reference:

Definition 1 A step (C, p, C ′) incurs a remote memory reference if in that step, p performed an

2

update operation on a shared variable or performed a read operation on a shared variable not in its
cache.

As a result of this model, a process that is spinning on a shared variable (repeatedly reading it
until its value changes to some desirable value) may only experience a small amount of RMR even
if it reads the shared variable many times.

2.2 The Readers-Writers Problem with Upgrade and Downgrade
An algorithm for the Readers-Writers problem with Upgrade and Downgrade is broken down into
several sections of code: the Remainder section, the Try section, the Critical section (CS), the
Upgrade section, the Downgrade section, and the Exit section. While in the Remainder section, a
process does not execute any code in the algorithm. In the Try section, a process tries to obtain
rights to the CS. In the CS, a process executes sensitive code. While within the CS, a process
may execute the Upgrade section (respectively, the Downgrade section) to gain higher privileges
(respectively, relinquish some privileges) in the CS. In the Exit section, a process relinquishes its
right to the CS. Note that different types of processes might execute different code for the same
section.

Each process’s code consists of a loop where it executes the Try section, optionally executes
the Upgrade and/or Downgrade sections an arbitrary number of times, and then executes the Exit
section before beginning the loop again. We define a process to be in the Remainder section when
its program counter is on the first line of the Try section. We define a process to be in the CS
when its program counter is on the first line of the Exit section, any line of the Upgrade section,
or any line of the Downgrade section. For convenience, when a process enters the CS or finishes
executing the Upgrade or Downgrade section, we say its program counter points to the next section
of code that it will execute, that is, one of the Exit section, the Upgrade section, or the Downgrade
section. Similarly, when a process finishes the Exit section, we say its program counter points to
the first line of the Try section.

We define an attempt at the CS as an execution of the Try section and a subsequent execution of
the Exit section (punctuated by an arbitrary number of executions of the Upgrade and Downgrade
sections) by a single process. More formally, an attempt A by a process p begins at some time t
when p executes the first statement of the Try section and concludes at the earliest t′ > t that p has
completed the Exit section. A is a read attempt if the process is a reader and a write attempt if the
process is a writer. A process is said to be active at some time t if it started an attempt at some
time before t but has not yet finished that attempt at time t.

Each process enters the Try section as a reader or writer (our algorithm allows these labels to
change when a process is in the Remainder section, but we will assume for simplicity that they
are fixed). While within the CS, a process can execute the Upgrade section to try to gain the
privileges of a writer, or the Downgrade section to release the privileges of a writer. An execution
of the Upgrade section may not always be successful: for example, if there are multiple readers
present, we can not allow a reader to upgrade its privileges to that of a writer. Therefore, a process
can complete the Upgrade section with a result of success or failure. Downgrade will always be
successful, as there is no obstacle to relinquishing privileges. Processes can execute Upgrade and
Downgrade an arbitrary number of times while they are within the CS, so to better keep track of

3

the current status of a given process, we separate processes into the following classes:

Definition 2 At any given time t, all active processes are classified in two different ways:

1. Original Type

(a) reader: a process that executed or is executing the reader’s Try section during the
current attempt.

(b) writer: a process that executed or is executing the wrtier’s Try section during the current
attempt.

2. Current Status

(a) normal process: a process that is in the Try section or the Exit section, or that is in the
CS and is not executing the Upgrade section or the Downgrade section at time t and
that has not completed the Upgrade section with a result of success or the Downgrade
section during the current attempt. Alternatively, a process that is not an upgrading
process, a downgrading process, an upgraded process, or a downgraded process.

(b) upgrading process: a process that is executing the Upgrade section at time t.

(c) downgrading process: a process that is executing the Downgrade section at time t.

(d) upgraded process: a process that has completed the Upgrade section with a result of
success during the current attempt and has not subsequently started executing the Exit
section or the Downgrade section.

(e) downgraded process: a process that has completed the Downgrade section during the
current attempt and has not subsequently started executing the Exit section, has not sub-
sequently completed the Upgrade section with a result of success, and is not executing
the Upgrade section at time t.

A process’s classification is considered an additional part of its local state. We then place the
following restrictions on the execution of the Upgrade and Downgrade sections:

• A process in the CS may execute the Upgrade section only if it is a normal reader or a
downgraded process.

• A process in the CS may execute the Downgrade section only if it is a normal writer or an
upgraded process.

When discussing the Try section, it can be useful to break it down further into a doorway and
a waiting room [6]. The doorway is bounded straight-line code where no waiting occurs. The
waiting room is all the code that comes after the doorway within the Try section. The concept of a
doorway allows us to formulate the notion of one process arriving before another one:

Definition 3 An attempt A doorway precedes an attempt A′ if the process executing A completes
its doorway in A before the process executing A′ completes its doorway in A′.

Two attempts A and A′ are considered to be doorway concurrent if neither attempt doorway
precedes the other.

4

We say a process p doorway precedes a process p′ at some time t if the current attempt of p
doorway precedes the current or subsequent attempt of p′.

We say a process p is doorway concurrent with a process p′ is neither process doorway precedes
the other.

It can also be useful to talk about a process being guaranteed to enter the critical section re-
gardless of the actions of other processes. We formulate the following definition to encapsulate
this notion:

Definition 4 A process p is enabled to enter the CS in a configuration C if p is in Try section in C
and there exists some fixed bound b such that for all runs from C, p enters the CS in at most b of its
own steps.

2.3 Properties of the Original Algorithm
Listed below are desirable properties for Reader-Writer Exclusion with Reader-Priority as formu-
lated by Bhatt [4]. For brevity, some of the context for the properties has been removed. For
justification of the desirability of these properties see Bhatt’s paper.

• (P1). Mutual Exclusion : If a writer is in the CS at any time, then no other process is in the
CS at that time.

• (P2). Bounded Exit : There is an integer b such that in every run, every process completes
the Exit section in at most b of its steps.

• (P3). First-Come-First-Served (FCFS) among writers : If w and w′ are any two write at-
tempts in a run and w doorway precedes w′, then w′ does not enter the CS before w.

• (P4). First-In-First-Enabled (FIFE) among readers : Let r and r′ be any two read attempts
in a run such that r doorway precedes r′. If r′ enters the CS before r, then r is enabled to
enter the CS at the time r′ enters the CS.

• (P5). Concurrent Entering : Informally, if all writers are in the Remainder section, readers
should not experience any waiting, i.e., every reader in the Try section should be able to
proceed to the CS in a bounded number of its own steps. More precisely, there is an integer
b such that, if σ is any run from a reachable configuration such that all writers are in the
Remainder section in every configuration in σ, then every read attempt in σ executes at most
b steps of the Try section before entering the CS.

• (P6). Livelock-freedom : If no process crashes in an infinite run, then infinitely many
attempts complete in that run.

Definition 5 Let r and w be a read attempt and a write attempt, respectively, in a run. We
define r >rp w if

– r doorway precedes w, or

– There is a time when some reader or writer is in the CS, r is in the waiting room, and
w is in the Try section.

5

• (RP1). Reader Priority : Let r and w be a read attempt and a write attempt, respectively, in
a run. If r >rp w, then w does not enter the CS before r.

• (RP2). Unstoppable Reader Priority : Let C be any reachable configuration in which some
read attempt r is in the waiting room. Then we have:

1. If a reader is in the CS in C, then r is enabled to enter the CS in C.

2. If no writer is in the CS or the Exit section in C and r >rp w holds for all write attempts
w that are in the Try section in C, then r is enabled to enter the CS in C.

2.4 Desirable Properties for an Algorithm with Upgrade and Downgrade
Many of the properties originally specified are still of value. However, many of them need to be
modified to support the notion of upgrading and downgrading. With this in mind, we formulate the
following properties:

• (P1′). Mutual Exclusion : If a normal writer or an upgraded process is in the CS at any time,
then no other process is in the CS at that time.

• (P2). Bounded Exit : There is an integer b such that in every run, every process completes
the Exit section in at most b of its steps.

• (P3). First-Come-First-Served (FCFS) among writers : If w and w′ are any two write at-
tempts in a run and w doorway precedes w′, then w′ does not enter the CS before w.

• (P4). First-In-First-Enabled (FIFE) among readers : Let r and r′ be any two read attempts
in a run such that r doorway precedes r′. If r′ enters the CS before r, then r is enabled to
enter the CS at the time r′ enters the CS.

• (P5′). Concurrent Entering : Informally, if all normal writers are in the Remainder section
and there is no upgraded or upgrading process in the CS or Exit section, readers should not
experience any waiting, i.e., every reader in the Try section should be able to proceed to the
CS in a bounded number of its own steps. More precisely, there is an integer b such that, if
σ is any run from a reachable configuration such that, in every configuration in σ, all writers
are in the Remainder section and there are no upgraded readers or upgrading readers in the
CS or the Exit section, then every read attempt in σ executes at most b steps of the Try section
before entering the CS.

• (P6). Livelock-freedom : If no process crashes in an infinite run, then infinitely many
attempts complete in that run.

See Definition 5 above for a definition of r >rp w.

• (RP1). Reader Priority : Let r and w be a read attempt and a write attempt, respectively, in
a run. If r >rp w, then w does not enter the CS before r.

• (RP2′). Unstoppable Reader Priority : Let C be any reachable configuration in which some
read attempt r is in the waiting room. Then we have:

6

1. If a normal reader or a downgraded process is in the CS in C, then r is enabled to enter
the CS in C.

2. If there is an upgrading process but it is not guaranteed to succeed–that is if there exists
a run from C in which the upgrading process completes its current execution of the
Upgrade section with a result of failure–then r is enabled to enter the CS in C.

3. If no writer, upgraded process, or upgrading process is in the CS or the Exit section in
C and r >rp w holds for all write attempts w that are in the Try section in C, then r is
enabled to enter the CS in C.

Items 1 and 3 of (RP2′) are analogous to items 1 and 2 of (RP2), but item 2 of (RP2′) requires
some explanation. Item 2 of (RP2′) addresses the situation of a reader r′ in the CS who has not yet
successfully upgraded. In this scenario, we are not necessarily sure whether r′ will succeed or not.
Since r′ is not assured to succeed at its upgrade operation, we don’t want r to have to wait for r′ if
r′ completes Upgrade with a result of failure. As a result, we mandate that unless r′ is guaranteed
to complete Upgrade with a result of success, it must not obstruct r.

Now we must consider desirable properties with regards to upgrading and downgrading. Pri-
marily, we consider when an execution of the Upgrade section should be successful. If another
process is in the CS, obviously Upgrade cannot succeed or it would violate mutual exclusion.
While Upgrade could conceivably succeed while there are readers in the Try section, this might be
undesirable if readers have priority. However, we can safely say that Upgrade should succeed if
there are no other readers present. We formulate this property more formally below:

• (P8′). Upgradeability : If a process in the CS executes the Upgrade section and all readers
other than that process are in the Remainder section throughout the entire execution of the
Upgrade section, the process will complete the Upgrade section with a result of success.

• (P9′). Bounded Upgrade : There is an integer b such that in every run where a process
executes the Upgrade section, it completes the Upgrade section in at most b of its steps.

• (P10′). Bounded Downgrade : There is an integer b such that in every run where a process
executes the Downgrade section, it completes the Downgrade section in at most b of its steps.

7

3 A Single-Writer Reader-Priority Algorithm with Upgrade and
Downgrade

We begin by proposing a single-writer algorithm which we will later extend to a multi-writer
algorithm. The algorithm is a direct extension of Bhatt’s reader-priority algorithm [4]. No line of
the original algorithm has been modified. Several lines have been added as well as several new
procedures. New lines are denoted by decimal notation. E.g. line 16 is a line from the original
algorithm while 16.1 is a new line.

8

Shared Variables
D ∈ {0, 1} is a read/write variable, initialized to 0
Gate ∈ {0, 1} is a read/write variable initialized to 0
X ∈ PID ∪ {true} is a compare&swap variable, initialized to any pid
Permit is a Boolean read/write variable, initialized to true
C is a fetch&add variable, initialized to 0
U ∈ {CLEAR, UPGRADING,WRITING} is a compare&swap variable initialized to CLEAR

V is a Boolean read/write variable initialized to false

procedure Writer-Tryi()
REMAINDER SECTION

1. prevD ← D
2. currD ← prevD
3. D ← currD
4. Permit← false
5. Promotei()
6. wait till Permit

CRITICAL SECTION (CS)
procedure Normal-Writer-Exiti()

7. Gate← currD
8. X ← i

procedure Promotei()
9. x← X
10. if (x 6= true)
11. if (CAS(X, x, i))
12. if (¬Permit)
13. if (C = 0)
14. if (CAS(X, i, true))
15. Permit← true

procedure Reader-Tryi():
REMAINDER SECTION

16. F&A(C, 1)
16.1. CAS(U, UPGRADING, CLEAR)
17. d← D
18. x← X
19. if (x ∈ PID)
20. CAS(X, x, i)
21. if (X = true)
22. wait till (Gate = d)
22.1. if (U = WRITING)
22.2. wait till V = false

CRITICAL SECTION (CS)

procedure Non-Upgraded-Reader-Exiti():
23. F&A(C,−1)
24. Promotei()

procedure Normal-Writer-Downgradei():
25.1. F&A(C, 1)
25.2. Gate← currD
25.3 X ← i

procedure Downgraded-Writer-Exiti():
26.1. F&A(C,−1)

prodedure Process-Upgradei():
27.1. if (C > 1) return false
27.2. U ← UPGRADING

27.3. if (C > 1) return false
27.4. V ← true
27.5. return CAS(U, UPGRADING,WRITING)

procedure Upgraded-Process-Downgradei()
28.1. V ← false
28.2. U ← CLEAR

procedure General-Upgraded-Exiti()
29.1. Upgraded-Process-Downgradei()
29.2. F&A(C,−1)

procedure Upgraded-Writer-Exiti()
30.1. General-Upgraded-Exiti()

procedure Upgraded-Reader-Exiti()
31.1. General-Upgraded-Exiti()
31.2. Promotei()

Figure 2: Single-Writer Multi-Reader Algorithm satisfying Reader Priority with Upgrade and
Downgrade. Code for process with pid i.

9

3.1 Restrictions on Procedures
The above algorithm utilizes many different procedures for the various types of processes and it
may not be immediately clear which processes can execute which procedures at what times. Figure
3 summarizes this information, including valid locations for the program counter (PC) of a process
at a given time. Note that since procedure calls only affect local state, being on a line with a
procedure call is the same as being on the first line of that procedure, e.g. PC = 31.1 =⇒ PC =
29.1 =⇒ PC = 28.1.

Valid Procedures and PC Values for a Process in the CS

Original Type Current Status Valid Procedure Valid PC Location
reader normal Process-Upgrade

Non-Upgraded-Reader-Exit
27.1
23

reader downgraded Process-Upgrade
Non-Upgraded-Reader-Exit

27.1
23

reader upgraded Upgraded-Process-Downgrade
Upgraded-Reader-Exit

28.1
31.1⇒29.1⇒28.1

writer normal Normal-Writer-Downgrade
Normal-Writer-Exit

25.1
7

writer downgraded Process-Upgrade
Downgraded-Writer-Exit

27.1
26.1

writer upgraded Upgraded-Process-Downgrade
Upgraded-Writer-Exit

28.1
30.1⇒29.1⇒28.1

Figure 3: Mapping of process types to procedures and PC values.

3.2 Informal Description of the Algorithm
First we will offer a brief description of the original algorithm. For this portion, you can ignore the
lines that have decimal notation (e.g. 16.1). For a more detailed description, see Bhatt’s paper [4].

First, a short description of the shared variables:

• C: The C variable is a count of all readers currently in the system.

• D: TheD variable indicates a direction. The idea is that when the writer is in the CS, readers
will wait to approach the CS from a particular direction (read from the D variable). When
the writer leaves the CS, it will let all readers waiting to come from this direction into the
CS.

• Gate: The Gate variable indicates which direction is allowed into the CS. Readers that have
a local d variable that matches Gate are allowed into the CS.

• X: The X variable indicates whether the writer owns the CS or not. If X is true, no reader
should be in the CS (except when the writer is exiting). Processes write their own pids into
X to disrupt other processes that might be trying to set X to true.

10

• Permit: The Permit variable indicates whether the writer is trying to gain permission to
enter the CS. When false, the writer is trying to gain permission to enter the CS. When true,
if the writer is in the waiting room, it has permission to enter the CS. Otherwise, the writer
isn’t trying to gain access to the CS.

When a reader enters (Lines 16 through 22), it announces its presence by updating the C
variable. The reader then reads the D variable into d. Then the reader reads the X variable, and
if it’s not true (i.e. the writer doesn’t own the CS), it tries to CAS it’s own pid into X to prevent
anyone from setting X to true (giving ownership of the CS to the writer). Then it checks to see if
the writer owns the CS. If so, it waits until the writer lets it in from the direction d it read earlier.
When a reader exits (Lines 23 through 24), it updates the C variable appropriately and then tries to
promote the writer (if present) into the CS. The mechanics of Promote aren’t relevant to Upgrade
and Downgrade, so their explanation will be omitted here.

When the writer enters (Lines 1 through 6), it first changes the direction readers should ap-
proach the CS from when the writer is in the CS. Then the writer indicates that it wants to gain
access to the CS by setting Permit to false. It then tries to promote itself into the CS. Finally, it
waits until Permit is true, meaning it is allowed to enter the CS. When the writer exits (Lines 7
through 8), it lets any readers waiting to enter the CS in by setting Gate to match the direction D
and clears X to indicate that it no longer owns the CS.

The addition of Upgrade and Downgrade largely ignores the above algorithm. The algorithm
as presented above is designed to handle synchronization between readers and a single writer.
However, when the writer downgrades, it effectively turns itself into a reader. As a result, the
portion of the algorithm concerned with synchronization between readers and the writer can be
largely ignored when handling upgrading and downgrading.

With this in mind, we will walk through the relevant aspects of the Upgrade and Downgrade
system. First, we will discuss two new shared variables that are introduced:

• U : The U variable indicates upgrade status. If it is CLEAR, no one is upgraded and no one
is currently trying to upgrade (or if someone is trying to upgrade, they will fail). If it is
UPGRADING, someone is currently trying to upgrade and might succeed. If it is WRITING,
someone has successfully upgraded and currently has permission to write in the CS.

• V : The V variable is a variable for processes to spin on when U = WRITING. If it is true
when U = WRITING, it will keep readers from entering the CS. This separate spin variable
is necessary to avoid cache misses that would occur if processes spun on U .

When a reader enters (Lines 16 through 22.2), it announces its presence by updating the C
variable. Remember that we only need Upgrade to succeed if there are no readers in the system. If
C gets above 1, we are allowed to make any upgrading process fail. After updating C, the reader
tries to thwart a process that might be currently upgrading by clearing the upgrade status (U). Next
it proceeds through the steps necessary to avoid conflict with writers (described above). Then it
checks if a process has successfully upgraded by checking the U variable. If U is WRITING (i.e.
an upgraded process is in the CS), it will wait on the V variable. When V is false, meaning that
the upgraded process has left the CS (or downgraded), it will be able to enter the CS. If U is not
WRITING, it can safely enter the CS, since any upgrade effort in progress is bound to fail.

11

Why is this so? Let’s examine the Upgrade section (Lines 27.1 through 27.5) to find out. Let’s
say there’s some process u executing the Upgrade section. The Upgrade section is designed to fail
if possible. There are three points that it can fail at: Line 27.1, 27.3 or 27.5. If there are any other
readers (or downgraded writers) in the system (that is, in the Try section or CS) when u executes
Line 27.1 or Line 27.3, u will immediately fail because C > 1. So if there is a process on Line
22.1 and it finds U 6= WRITING, it can safely proceed into the CS without worry that a process
on Line 27.1, 27.2, or 27.3 will be able to succeed at Upgrade. What if u is at Line 27.4 or 27.5,
though? Well, for u to succeed, U must be UPGRADING when u performs the CAS on Line 27.5.
And for u to be at Line 27.4 or 27.5, it must have read C = 1 at some point. But at some time after
that, another process came and got to Line 22.1. To do that, this new process would have had to
execute Line 16 (updating C to a value > 1) and then 16.1, clearing the U variable. Additionally,
no new process could enter Upgrade to restore U to UPGRADING, because Line 27.1 prevents two
processes from being in the Upgrade section at the same time. Therefore, if there’s a process at
Line 22.1 before u executes Line 27.5, u will fail the CAS on 27.5.

In contrast to the Upgrade section, the Exit section and Downgrade section for upgraded pro-
cesses are straightforward. When an upgraded process is downgrading (Lines 28.1 through 28.2),
all it needs to do is set V to false to release readers stuck at Line 22.2 and then set U to CLEAR

to indicate no upgraded process is in the CS. When an upgraded process is exiting (Lines 29.1
through 29.2), it does the same thing, but then also decrements C to indicate that it’s leaving the
system. An exiting reader would also try to promote a writer into the CS if applicable (Line 31.2).
The Downgrade section for a normal writer (Lines 25.1 through 25.3) is also straightforward. The
writer first adds itself to the system as a reader by incrementing C and then performs a normal
writer exit, allowing any waiting readers to join it in the CS. When a downgraded writer exits, all
it needs to do is decrement C.

We will now address the need for the V variable. Without the V variable, processes would just
spin on U . The problem comes when new readers enter the Try section. If processes just spin on
U , then we can construct the following bad interleaving: a process is upgraded (U = WRITING)
and a process p is spinning on U waiting for it to change to a value other than WRITING. Now a
process enters and executes line 16.1. The CAS fails since U 6= UPGRADING, but because it is an
update operation, all cached copies of U are invalidated. Now p suffers a cache miss the next time
it reads U . Every reader that enters could cause a cache miss for p leading to non-constant RMR.

4 Proof of Correctness
Theorem 1 (Single-Writer Multi-Reader lock with Reader Priority and Upgrade/Downgrade)
The algorithm in Figure 2 implements a Single-Writer Multi-Reader lock satisfying properties
(P1′), (P2)-(P4), (P5′), (P6), (RP1) and (RP2′), (P8′)-(P10′). The RMR complexity of the algo-
rithm in the CC model is O(1). The algorithm uses O(1) number of shared variables that support
read, write, fetch&add, and compare&swap operations.

Note that the form of the proof and methods (proof by invariants) used are directly adapted
from the original proof by Bhatt and Jayanti since the entire algorithm must be proved correct
again in addition to the new components. As a result, much of the following language is taken
directly from Bhatt’s original paper with modifications to allow different types of invariants [4].

12

In particular, the following invariants and their proofs are taken verbatim from the paper with no
substantive modification:
I1,2,3, I4, I6tf , I6tt

The following invariants and their proofs are taken almost verbatim from Bhatt and Jayanti’s
paper with minor substantive modifications:
I9, I10,11, I12...14, Iptf , Iptt, I15, I6, I7, I8

The remaining invariants and their proofs are original and serve to prove the correctness of the
additions to the algorithm.

We will prove the algorithm correct using a set of invariants, I. We will prove the invariants
are correct inductively by proving:

• I holds in the initial configuration, and

• If I holds in configuration C, then it also holds in any configuration C.s resulting from a step
s performed by any process. Note that some steps s might be impossible because I holds in
C.

4.1 Invariants of the Algorithm
As defined earlier, configuration C corresponds to the value of shared variables D, Gate, X ,
Permit, C, U , and V and the local state of each individual process. The state of the reader r
is given by its program counter, PCr, the values of its local variables d and x, and whether it is
normal, upgraded, or downgraded. The state of the writer w is given by its program counter, the
value of its local variable x, and whether it is normal, upgraded or downgraded.

4.1.1 Notation Used in the Invariants

Here is some of the notation used in the invariants :

• We denote the value of a local variable y of process p by p.y. Similarly, we denote the pid
of process p by p.pid.

• PCp is the program counter of a process p. Since there’s only one writer, we call it w. Note
that at any time t, PCw ∈ {1 . . . 15, 25.1 . . . 29.2}, and for a reader r,
PCr ∈ {16 . . . 24, 9 . . . 15, 27.1 . . . 29.2}. As the statements at Line 5, Line 24, and Line
31.2 are calls to the Promote procedure, we will assume PC ∈ {5, 24, 31.2} =⇒ PC = 9.
Similarly, since the statements at Line 31.1 and Line 30.1 are calls to the
General-Upgraded-Exit procedure, we will assume PC ∈ {31.1, 30.1} =⇒ PC =
29.1. And finally, since the statement at Line 29.1 is a call to the Upgraded-Process-Downgrade
procedure, we will assume PC = 29.1 =⇒ PC = 28.1. Note that this means that
PC ∈ {31.1, 30.1} =⇒ PC = 28.1. These assumptions are valid since procedure calls
only modify the local state of the process. Therefore, it is not necessary to consider any
situations where PC ∈ {5, 24, 31.2, 31.1, 30.1, 29.1}.

13

• R(condition A) denotes the set of readers which satisfy the condition A, e.g.,R(d = D,PC ∈
{18 . . . 22}) is the set of all readers r, such that PCr ∈ {18 . . . 22} and the value of the local
variable r.d is equal to D. For the purposes of this notation, no distinction is made between
the various types of readers, so for example, if an upgraded reader is in the critical section,
|R{PC = 28.1}| = 1.

• Similarly, W(condition A) denotes the set of writers which satisfy the condition A. Since
there is only one writer, this set either contains a single element or is empty. For the purposes
of this notation, no distinction is made between the various types of writers.

• Similarly, P(condition A) denotes the set of processes (readers or writers) which satisfy the
condition A. For the purposes of this notation, no distinction is made between the various
types of processes.

• PID(H), denotes the set of pids corresponding to the processes with their program counters
coming from set H . More formally, PID(H) = {p.pid : PCp ∈ H}.

Now we describe the set of invariants I satisfied by any configuration C of the algorithm. The
set I comprises of several different invariants listed in Figure 4.

We have classified much of I by the program counter of the writer, i.e., PCw. For example,
I1,2,3 is the invariant when PCw ∈ {1 . . . 3}. Of the invariants conditioned on PCw, only one ever
applies at a time. These invariants are: I1,2,3, I4, I9, I10,11, I12...14, Iptf , Iptt, I15, I6, I6tf , I6tt, I7,
I8, I25.1/2, I25.3, Idown.

There are a couple global invariants, i.e. invariants which are unconditionally true. For in-
stance, IG applies regardless of the PCs of the processes.

There are also some invariants conditioned on the number of processes or readers at a given
line. For instance, Iclear applies when |P(PC = 28.2)| = 1, that is, when there is exactly one
process at line 28.2.

And finally, there are some invariants conditioned on the state of the shared variables. For
instance, Iuw depends on the value of the U variable.

14

• IG: Global Invariant

1. C = |R(PC ∈ {16.1 . . . 23}) ∪ W(PC ∈
{25.2 . . . 26.1})∪P(PC ∈ {27.1 . . . 29.2})|

• I1,2,3: PCw = {1, 2, 3} =⇒

1. Gate = D

2. X 6= true, X 6∈ PID(13, 14)

3. R(d = D,PC ∈ {18 . . . 23, 27.1 . . . 29.2}) =
R(PC = 15) = ∅

4. Permit = true

• I4: PCw = 4 =⇒

1. Gate = D

2. X 6= true, X 6∈ PID(13, 14)

3. R(PC = 15) = ∅

4. Permit = true

• I9: PCw = 9 ∧X 6= true =⇒

1. Gate = D

2. R(PC = 15) = ∅

3. Permit = false

4. X ∈ PID(14) =⇒ R(d =
D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅ ∧
R(PC ∈ {19, 20}) ⊆ R(x = X)

• I10,11: PCw ∈ {10, 11} ∧X 6= true =⇒

1. Gate = D

2. R(PC = 15) = ∅

3. Permit = false

4. X ∈ PID(14) =⇒ R(d =
D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅ ∧
R(PC ∈ {19, 20}) ⊆ R(x = X)

5. X 6= w.x =⇒ R(PC ∈
{16.1 . . . 24, 27.1 . . . 29.2, 9}) ∪ R(x =
X,PC ∈ {10, 11}) 6= ∅ ∨ X ∈
PID(12 . . . 14))

• I12...14: PCw ∈ {12 . . . 14} ∧X 6= true =⇒

1. Gate = D

2. R(PC = 15) = ∅
3. Permit = false

4. X ∈ PID(14) =⇒ R(d =
D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅ ∧
R(PC ∈ {19, 20}) ⊆ R(x = X)

5. X 6= w.pid =⇒ R(PC ∈
{16.1 . . . 24, 27.1 . . . 29.2, 9}) ∪ R(x =
X,PC ∈ {10, 11}) 6= ∅ ∨ X ∈
PID(12 . . . 14))

• Iptf : PCw ∈ {9 . . . 14}, X = true and Permit =
false =⇒

1. Gate = D

2. |R(PC = 15)| = 1

3. R(d = D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{22.1 . . . 23, 27.1 . . . 29.2}) = ∅

• Iptt: PCw ∈ {9 . . . 14}, X = true and Permit =
true =⇒

1. Gate = D

2. R(PC = 15) = ∅
3. R(d = D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{22.1 . . . 23, 27.1 . . . 29.2}) = ∅

• I15: PCw = 15 =⇒

1. Gate = D

2. r(PC = 15) = ∅
3. Permit = false

4. R(d = D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{22.1 . . . 23, 27.1 . . . 29.2}) = ∅

5. X = true

• I6: PCw = 6 and X 6= true =⇒

1. Gate = D

2. R(PC = 15) = ∅
3. Permit = false

4. X ∈ PID(14) =⇒ R(d =
D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅ ∧
R(PC ∈ {19, 20}) ⊆ R(x = X)

5. R(PC ∈ {16.1 . . . 24, 27.1 . . . 29.2, 9}) ∪
R(x = X,PC ∈ {10, 11}) 6= ∅ ∨ X ∈
PID(12 . . . 14)

15

• I6tf : PCw = 6, X = true, P ermit = false =⇒
Identical to Iptf .

• I6tt: PCw = 6, X = true, P ermit = true =⇒
Identical to Iptt.

• I7: PCw = 7 =⇒

1. Gate = D

2. R(PC = 15) = ∅
3. Permit = true

4. R(d = D,PC ∈ {18 . . . 23, 27.1 . . . 29.2}) =
R(PC ∈ {22.1 . . . 23, 27.1 . . . 29.2}) = ∅

5. X = true

• I8: PCw = 8 =⇒

1. Gate = D

2. R(PC = 15) = ∅
3. Permit = true

4. R(d = D,PC ∈ {18 . . . 23, 27.1 . . . 29.2}) =
∅

5. X = true

• I25.1/2: PCw ∈ {25.1 . . . 25.2} =⇒
Identical to I7.

• I25.3: PCw = 25.3 =⇒
Identical to I8 with the additional item:

6. R(PC ∈ {27.2 . . . 29.2}) = ∅

• Idown: PCw ∈ {26.1 . . . 29.2} =⇒
Identical to I1,2,3.

• IG2: |P(PC ∈ {27.2 . . . 29.2})| ≤ 1

• Iuw: U = WRITING =⇒
|P(PC ∈ {28.1 . . . 28.2})| = 1

• Iclear: |P(PC = 28.2)| = 1 =⇒
V = false

• Istuck: R(PC = 22.2) 6= ∅ =⇒
P(PC ∈ {27.4, 27.5}) = ∅

• Ivt: V = true ∧R(PC = 22.2) 6= ∅ =⇒
|P(PC = 28.1)| = 1

• Iblock: |P(PC ∈ {27.5, 28.1})| = 1 =⇒
V = true

• Iwri: |P(PC = 28.1)| = 1 =⇒
U = WRITING

• Iuu: U = UPGRADING ∧ |P(PC ∈
{27.4, 27.5})| = 1 =⇒
R(PC ∈ {17 . . . 22.2}) = ∅

• Iread: R(PC = 23) ∪W(PC = 26.1) ∪ P(PC =
27.1) 6= ∅ =⇒
U = CLEAR ∨ P(PC ∈ {27.4, 27.5}) = ∅

• Iuwvt: U = WRITING ∧ V = true =⇒
R(PC = 23)∪W(PC = 26.1)∪P(PC = 27.1) =
∅

Figure 4: Invariants comprising I.

4.2 Proof of the Invariants
Now we prove the correctness of the set of invariants I given above. We will first show that I
holds initially.

Lemma 2 If C0 is the initial configuration of the algorithm given in Figure 2, then I holds in C0.

PROOF. Initially in the algorithm: PCw = 1 and for all readers r, PCr = 16; C = 0; U = CLEAR;
and V = false. Therefore IG, IG2, Iuw, Iclear, Ivt, Iblock, Iwri, Iuu, Iread, Iuwvt, Istuck all trivially
hold.
I1,2,3 is the only other invariant which should be apply in C0. Items 1,2 and 4 of I1,2,3 are true

in C0 because initially Gate = D,X 6= true and Permit = true. Item 3 of I1,2,3 is true because
for all readers r, PCr = 16.

Now we will prove the main lemma required to prove the correctness of the invariants. Es-
sentially, we have to show that if I holds in a configuration, then it also holds in a configuration
resulting from a step by any process.

16

Lemma 3 If I holds in the configuration C, then it also holds in the configuration C.s, where C.s
is the configuration after some process p takes a step s in C.

PROOF.
First we will show that our global invariants hold for any step by any process. Note that many

of the following invariant proofs rely on certain processes not being permitted to execute certain
procedures based on their state as described in Figure 3. For instance, it is impossible for a process
on Line 28.2 to step to Line 28.1: a downgraded process is prohibited from downgrading again
until it upgrades.

Claim 3.1 If IG holds in C, then it also holds in C.s.

PROOF. We have to show thatC = |R(PC ∈ {16.1 . . . 23})∪W(PC ∈ {25.2 . . . 26.1})∪P(PC ∈
{27.1 . . . 29.2})|. Let us first defineRG to be the set of readers with PC pointing to one of the lines
specified in this invariant and let WG be the set of writers with PC pointing to one of the lines
specified in this invariant. We then have:

RG = R(PC ∈ {16.1 . . . 23}) ∪ P(PC ∈ {27.1 . . . 29.2})
WG =W(PC ∈ {25.2 . . . 26.1}) ∪ P(PC ∈ {27.1 . . . 29.2})

Note that C only increases (and only by 1) when a reader r takes a step at Line 16 (i.e., r joins
the setRG) or the writer w takes a step at Line 25.1 (i.e. w joins the setWG).

Similarly, C only decreases (and only by 1) when a reader r takes a step at Line 23 or 29.2
(i.e., r leaves the setRG) or the writer takes a step at Line 26.1 or 29.2 (i.e. w leaves the setWG).
That the above-mentioned lines (16, 25.1, 23, 29.2, 26.1) are the only entry and exit points forRG

andWG is obvious from the algorithm and the rules for executing procedures formulated in Figure
3. Therefore IG holds for any step s.

Claim 3.2 If IG2 holds in C, then it also holds in C.s.

PROOF. First note that the set of PC values specified in the invariant ({27.2 . . . 29.2}) can only be
entered from one line (Line 27.2) because of the rules for executing procedures and because IG2

holds in C. Therefore, to violate IG2, s must be a step from Line 27.1 to Line 27.2 when there is
already a process with PC ∈ {27.2 . . . 29.2} in C. By IG, C > 1 in configuration C. Therefore, s
cannot possibly be a step from Line 27.1 to Line 27.2.

Claim 3.3 If Iuw holds in C, then it also holds in C.s.

PROOF. By cases:

• Assume U = WRITING in C. To violate Iuw, s must be a step from Line 27.5 to Line 28.1 or
s must be a step from Line 28.2 to 29.2, 26.1, or 23. If U = WRITING, the CAS at line 27.5
would fail, so the first case is impossible. And if s is a step from Line 28.2, U will be set to
CLEAR.

17

• Assume U 6= WRITING ∧ |P(PC ∈ {28.1 . . . 28.2})| 6= 1 in C. Then to violate Iuw, s must
set U to WRITING. However, the only place U can be set to WRITING is on Line 27.5 by a
successful Upgrade, so s would have to be a step from Line 27.5 to 28.1 (see Figure 3). By
IG2, there can be no process on Line 28.1 or 28.2 in C, so |R(PC ∈ {28.1 . . . 28.2})| = 1
after s.

Claim 3.4 If Iclear holds in C, then it also holds in C.s.

PROOF. By cases:

• Assume |P(PC = 28.2)| = 1 in C. V can only be set to true on Line 27.4. By IG2, there
can be no process on Line 27.4 in C.

• Assume |P(PC = 28.2)| 6= 1 ∧ V = true in C. By IG2, |P(PC = 28.2)| = 0 in C.
Therefore, to violate Iclear, a process would have to step from Line 28.1 to 28.2 without
setting V to false which is impossible.

Claim 3.5 If Istuck holds in C, then it also holds in C.s.

PROOF. By cases:

• AssumeR(PC = 22.2) 6= ∅ in C. To violate Istuck, s must be a step from Line 27.3 to Line
27.4. By IG, C > 1, so this step is impossible.

• Assume R(PC = 22.2) = ∅ ∧ P(PC ∈ {27.4, 27.5}) 6= ∅ in C. To violate Istuck, s must
be a step from Line 22.1 to Line 22.2, so U must be equal to WRITING. By Iuw, there is a
process at Line 28.1 or 28.2 in C. However, this violates IG2. Therefore, s is impossible.

Claim 3.6 If Ivt holds in C, then it also holds in C.s.

PROOF. By cases:

• Assume V = true ∧ R(PC = 22.2) 6= ∅ in C. To violate Ivt, either another process would
have to step to Line 28.1 or the process at Line 28.1 would have to step Line 28.2 without
setting V to false. The first case is impossible by IG2 and the second is impossible since V
is set to false on Line 28.1.

• Assume V = false ∧R(PC = 22.2) 6= ∅ ∧ |P(PC = 28.1)| 6= 1 in C. To violate Ivt, s must
set V to true which can only occur on Line 27.4. By Istuck, there is no process on Line 27.4
in C.

18

• Assume V = true ∧ R(PC = 22.2) = ∅ ∧ |P(PC = 28.1)| 6= 1 in C. To violate Ivt, a
process would have to step from Line 22.1 to Line 22.2. For a process to step from Line
22.1 to Line 22.2, WRITING must be true in C. Therefore, by Iuw, there must be a process
on Line 28.1 or 28.2 in C. Since there can be no process on Line 28.1 (by the assumption
|P(PC = 28.1)| 6= 1 and IG2), there must be a process on Line 28.2 in C. But by Iclear,
V = false in C which is a contradiction.

Claim 3.7 If Iblock holds in C, then it also holds in C.s.

PROOF. By cases:

• Assume |P(PC ∈ {27.5, 28.1})| = 1 in C. To violate Iblock, s would have to set V to
false on Line 28.1. However, if s is a step from Line 28.1 to Line 28.2, then |P(PC ∈
{27.5, 28.1})| 6= 1 in C.s.

• Assume |P(PC ∈ {27.5, 28.1})| 6= 1 ∧ V = false in C. To violate Iblock, s would have to
step to Line 27.4 from Line 27.5 since |P(PC ∈ {27.5, 28.1})| = 0 by IG2. However, s
would then set V to true.

Claim 3.8 If Iwri holds in C, then it also holds in C.s.

PROOF. By cases:

• Assume |P(PC = 28.1)| = 1 in C. To violate Iwri, s must set U to CLEAR or UPGRADING.
U can be set to CLEAR on Line 16.1, but only if it’s value is UPGRADING, so s can not be a
step at Line 16.1. U can also be set to UPGRADING and CLEAR at Line 27.2 and Line 28.2,
respectively. However, by IG2, there can be no process at either of these lines.

• Assume |P(PC = 28.1)| 6= 1∧U 6= WRITING in C. To violate Iwri, s must be a step to Line
28.1. However, a process can only step to Line 28.1 from Line 27.5 and stepping from Line
27.5 to Line 28.1 will set U to WRITING.

Claim 3.9 If Iuu holds in C, then it also holds in C.s.

PROOF. By cases:

• Assume U = UPGRADING ∧ |P(PC ∈ {27.4, 27.5})| = 1 in C. To violate Iuu, s must be a
step from Line 16.1 to Line 17. Such a step will set U to CLEAR.

19

• Assume U 6= UPGRADING ∧ |P(PC ∈ {27.4, 27.5})| = 1 ∧R(PC ∈ {17 . . . 22.2}) 6= ∅ in
C. To violate Iuu, s must set U to UPGRADING. U can only be set to UPGRADING on Line
27.2, and by IG2, there can be no process on Line 27.2.

• Assume U = UPGRADING ∧ |P(PC ∈ {27.4, 27.5})| 6= 1 ∧R(PC ∈ {17 . . . 22.2}) 6= ∅ in
C. By IG2, |P(PC ∈ {27.4, 27.5})| = 0. To violate Iuu, s must be a step from Line 27.3
to Line 27.4. For this to be possible C must be less than or equal to 1. Therefore, by IG,
R(PC ∈ {17 . . . 22.2}) = ∅.

Claim 3.10 If Iread holds in C, then it also holds in C.s.

PROOF. By cases:

• AssumeR(PC = 23)∪W(PC = 26.1)∪P(PC = 27.1) 6= ∅∧U = CLEAR in C. To violate
Iread, s must set U to a value other than CLEAR. The only place where this can happen is
Line 27.2 (the CAS at Line 27.5 will fail since U = CLEAR). But if a process is at Line 27.2,
there can be no process at Line 27.4 or 27.5 by IG2.

• Assume R(PC = 23) ∪W(PC = 26.1) ∪ P(PC = 27.1) 6= ∅ ∧ P(PC ∈ {27.4, 27.5}) = ∅
in C. To violate, Iread, s must be a step from Line 27.3 to Line 27.4. However, by IG, C > 1
so such a step is impossible.

• Assume R(PC = 23) ∪ W(PC = 26.1) ∪ P(PC = 27.1) = ∅ ∧ U 6= CLEAR ∧ P(PC ∈
{27.4, 27.5}) 6= ∅ in C. To violate Iread, s must be a step by a reader from Line 22.1, 22.2,
or 28.2 to Line 23 or 27.1 or a step by the writer from Line 25.3 or 28.2 to Line 26.1 or Line
27.1.

We will first consider a step by a reader or the writer from Line 28.2. In this case, U will be
set to CLEAR, so the invariant will hold.

We will next consider the case of a step by a reader from Line 22.1 or 22.2. By the con-
trapositive of Iuu, U 6= UPGRADING ∨ |P(PC ∈ {27.4, 27.5})| 6= 1. In the latter case,
P(PC ∈ {27.4, 27.5}) = ∅ by IG2. In the former case, either U = CLEAR (precluded by
our assumption) or U = WRITING. If U = WRITING, then by Iuw and IG2, there can be no
process at Line 27.4 or 27.5 which is a contradiction.

Finally, we consider the case of a step by the writer from 25.3. By item 6 of I25.3, R(PC ∈
{27.4, 27.5}) = ∅ in C. So even if the writer takes a step, the invariant holds.

Claim 3.11 If Iuwvt holds in C, then it also holds in C.s.

PROOF. By cases:

20

• Assume U = WRITING ∧ V = true in C. To violate Iuwvt, s must be a step by a reader from
Line 22.1, 22.2, or 28.2 to Line 23 or Line 27.1 or a step by the writer from Line 25.3 or
28.2 to Line 26.1 or 27.1.

We first consider the case of a step by a reader or the writer from Line 28.2. In this case, U
will be set to CLEAR, so the invariant will hold.

We next consider a step by a reader from 22.1 or 22.2. The reader obviously cannot step to
23 or 27.1, so the invariant holds.

Finally, we consider the case of a step by the writer from 25.3. By item 6 of I25.3, R(PC ∈
{28.1 . . . 28.2}) = ∅ and therefore, by the contrapositive of Iuw, U 6= WRITING which is a
contradiction.

• Assume U = WRITING ∧ V = false ∧R(PC = 23) ∪W(PC = 26.1) ∪ P(PC = 27.1) 6= ∅
in C. To violate Iuwvt, s must set V to true. This can only happen on Line 27.4. By Iread,
P(PC ∈ {27.4, 27.5}) = ∅, so this is impossible.

• Assume U 6= WRITING∧V = true∧R(PC = 23)∪W(PC = 26.1)∪P(PC = 27.1) 6= ∅ in
C. To violate Iuwvt, s must set U to WRITING. This can only happen on line 27.5. By Iread,
U = CLEAR ∨ P(PC ∈ {27.4, 27.5}) = ∅, so either there is no process on Line 27.5 or the
CAS on Line 27.5 will fail.

Before we prove the invariants case by case based on the value of PCw and the values of some
shared variables, we make the following simple observation based on the code of Reader-Try.
It simply says that a step by a reader cannot change the values of D,Gate and PCw.

Proposition 4.1 If s is a step by a reader, then s does not change D,Gate or PCw.

We also make the following observations about the variable X and the set of processes which
can change it. One can easily verify these observations by simple inspection of Lines 9 through
14, Lines 18 through 20 and Line 8.

Proposition 4.2 X is only set to true at Line 14, and if X = true, then it does not change till the
writer executes Line 8.

From now on we will assume these propositions as mere facts of the algorithm.

Claim 3.12 If PCw ∈ {1, 2, 3} in C, then I holds in C.s

PROOF. As PCw ∈ {1, 2, 3} in C, so we know that I1,2,3 holds in C.
We will prove this claim and all the subsequent claims in this lemma based on the whether s is

a step by a reader or the writer.

• s is a step by a reader r: As s cannot change PCw we have to essentially show that I1,2,3
is satisfied in C.s. As s cannot change Gate, Item 1 of I1,2,3 will remain unaffected. So
we only need to show that Items 2-4 of I1,2,3 are still satisfied in C.s. Item 4 of I1,2,3 still
holds because by Item 3 of I1,2,3, no reader is at Line 15 in C. As R(PC = 14) = ∅ in C,

21

X 6= true in C.s. And as Permit = true in C, no reader can execute Line 12 and enter the
set R(PC ∈ {13, 14}) in C.s. Combining the previous two facts one can see that Item 2 of
I1,2,3 still holds in C.s. Item 3 will still hold because there is no reader at Line 14 in C (Item
2 of I1,2,3) and no reader can execute Line 17 and proceed to Line 18 with d = D.

• s is the step by the writer. As PCw ∈ {1, 2, 3}, so the writer can either execute Line 1 and
move to Line 2, or execute Line 2 and move to Line 3, or execute Line 3 and move to Line
4. The first two cases are not interesting as the writer does not change any shared variables
and PCw is still in {1, 2, 3}, hence all Items of I1,2,3 still hold.

Now say the writer executes Line 3, then PCw = 4 in C.s. Hence, we have to show that I4 is
satisfied in C.s. One can easily see that Items 2-4 of I4 are implied by the fact the Items 2-4
of I1,2,3 hold in C. Item 1 of I4 holds in C.s because at Line 4, the writer toggles D and as
Gate = D in C, Gate = D in C.s.

Claim 3.13 If PCw = 4 in C, then I holds in C.s

PROOF. As PCw = 4 in C, we know that I4 holds in C.
We will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: We have to show that I4 still holds in C.s. One can easily verify
that items of I4 still hold in C.s because of the same reason they held in I1,2,3.

• s is a step by the writer: If the writer takes the step s, it will proceed to Line 5 (or simply
Line 9). Also note that as X 6= true in C and the writer does not change X in Line 4, so
X 6= true in C. So we have to verify that I9 holds in C.s. The only shared variable the writer
changes at Line 4 is Permit (it sets it false). So Item 3 of I9 trivially holds in C.s. As there
are no processes at Line 14 in C, one can see that PID(14) = ∅ in C.s. Hence, Item 4 of I9
holds in C.s. One can easily that rest of the items in I9 are simply implied by the fact that I4
holds in C.

Claim 3.14 If PCw = 5 (or, PCw = 9) and X 6= true in C, then I holds in C.s

PROOF. As PCw = 9 ∧X 6= true in C, we know that I9 holds in C.
We will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: We know s cannot change PCw but it can change X from some
pid to true. So we will prove this part by further two cases depending upon whether step s
changes X or not.

22

1. s does set X to true: As s cannot change Item 1 of I9, we only need to show that Items
2-4 of I9 are still satisfied in C.s. As Item 2 of I9 (R(PC = 15) = ∅) holds in C, to
violate it in C.s, s has to be a step at Line 14 such that r proceeds to Line 15 after it.
But this would mean that X is changed to true, so I9 would no longer apply. As there
is no reader at Line 15 in C, Item 3 of I9 still holds in C.s.
Now we come to the most interesting case; say Item 4 of I9 is violated in C.s. This
can happen by two cases ; (a) if s is a step from Line 13 to Line 14 and the condition
R(d = D, PC ∈ {18 . . . 22})∪R(PC ∈ {21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅∧R(PC ∈
{19, 20}) ∈ R(x = X) is not true in C.s, (b)X ∈ PID(14) in C and C.s, and condition
R(d = D, PC ∈ {18 . . . 22})∪R(PC ∈ {21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅∧R(PC ∈
{19, 20}) ∈ R(x = X) is violated by s. If the case (a), where s is a step from Line 13 to
Line 14, C should be 0 in C. Hence, by IG, R(PC ∈ {16.1 . . . 23, 27.1 . . . 29.2}) = ∅
in C and C.s. This would trivially imply R(d = D,PC ∈ {18 . . . 22}) ∪ R(PC ∈
{21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅ ∧ R(PC ∈ {19, 20}) ∈ R(x = X).
So now lets come to the more interesting case, i.e., case (b), when X ∈ PID(14) in
C as well as C.s, but the step s violates the condition R(d = D, PC ∈ {18 . . . 22}) ∪
R(PC ∈ {21, 22.1 . . . 23, 27.1 . . . 29.2}) = ∅ ∧ R(PC ∈ {19, 20}) ∈ R(x = X). We
will consider each part of this condition separately in the following cases :

– X ∈ PID(14) ∧R(d = D,PC ∈ {18 . . . 22}) 6= ∅ in C.s: As Line 17 is d← D,
and R(d = D, PC ∈ {18 . . . 22}) = ∅ in C, one can clearly see that no reader can
enter the setR(d = D, PC ∈ {18 . . . 22}) in step s.

– X ∈ PID(14) ∧ R(PC ∈ {21 . . . 23, 27.1 . . . 29.2}) 6= ∅ in C.s: This case is
further broken down in two cases, based on whether r enters Line 22.1 or Line 21
in s. Say r enters Line 22.1 in step s. There is no process at Line 21 in C, so it
means that s is a step at Line 22. As R(d = D,PC ∈ {18 . . . 22}) = ∅ in C, one
can see that if r takes a step at Line 22 (wait till Gate = d), it will have d = D.
But in this case r cannot be at Line 22.1, because Gate = D in C.
Now say r enters Line 21 by step s. It cannot enter Line 21 from Line 19 because
X ∈ PID in C. As conditions for Item 4 hold in C, so R(PC ∈ {19, 20}) ∈
R(x = X). Hence, r.x = X in C. So if r enters Line 21 from Line 20, X will be
equal to r.pid in C.s. Hence, X ∈ PID(21) in C.s, which is a contradiction.

– X ∈ PID(14) ∧ R(PC ∈ {19, 20}) 6∈ R(x = X): As R(PC ∈ {19, 20}) ∈
R(x = X) in C, soR(PC ∈ {19, 20}) ∈ R(x = X) in C.s also, because if r takes
a step at Line 18 (x← X), it will enter Line 19 with x = X .

2. s sets X to true: As Permit = false in C and s changes X to true, we have to show
that Iptf holds in C.s. One can easily see that Item 1 of Iptf holds. As s sets X to true,
it means that s is a step at Line 14 (CAS(X, i, true)). Moreover, s is a successful CAS.
Hence, r is at Line 15 in C.s, and as there were no readers at Line 15 in C (Item 2 of
I9), r is the only process at Line 15 in C.s, hence Item 2 of Iptf holds in C.s.
As r succeeds in the CAS at Line 14 (CAS(X, r.pid, tr)), it means that X ∈ PID(14)
in C. By Item 4 of I9, this means that R(d = D, PC ∈ {18 . . . 22}) ∪ R(PC ∈
{22.1 . . . 23, 27.1 . . . 29.2}) = ∅ in C. This means that R(d = D,PC ∈ {18 . . . 22}) ∪
R(PC ∈ {22.1 . . . 23, 27.1 . . . 29.2}) is also empty in C.s, hence Item 3 of Iptf also
holds in C.s.

23

• s is the step by the writer. If the writer takes the step s, it proceeds to Line 10. So we have to
show that I10,11 holds in C.s. Item 1-4 of I10,11 are exactly identical to Item 1-4 of I9. And
as the writer does not change any of those items in s, they will continue to hold in C.s. Item
5 of I10,11 is trivially true in C.s, because when the writer executes Line 9, it sets w.x to X .

Claim 3.15 If PCw ∈ {10, 11} ∧X 6= true in C, then I holds in C.s

PROOF. As PCw ∈ {10, 11} ∧X 6= true in C, we know that I10,11 holds in C.
We will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: Again we have two cases here depending upon whether s changes
X to true or not.

1. s changes X to true: If s changes X to true, we have to show that Iptf holds in C.s.
The proof of this part is exactly same as in the case when PCw = 9 ∧ X 6= true in C
and a reader takes a step s to change X to true.

2. s does not change X to true: So we have to verify that I10,11 still holds in C.s. The
proof that Items 1-4 of I10,11 still hold in C.s, is exactly same as the case when PCw =
9 ∧X 6= true in C and a reader takes a step s that does not set X to true.
Now we have to show that Item 5 of I10,11 still holds C.s. To see why this is true, note
that there is a continuity in the sets R(PC ∈ {16.1 . . . 24, 9, 27.1 . . . 29.2}), R(x =
X, PC ∈ {10, 11}) and PID(12 . . . 14). By continuity we mean that if r leaves the
set R(PC ∈ {16.1 . . . 24, 9, 27.1 . . . 29.2}), then r enters the set R(x = X, PC ∈
{10, 11}). Similarly, when a r leaves the set R(x = X, PC ∈ {10, 11}), r enters Line
12 with X = r.x, hence X ∈ PID(12 . . . 14). Hence, the only way s can violate Item
5 of I10,11 if r executes Line 14 (CAS(X, r.pid, true)) while X = r.pid in C. But then
s will set X to true, which is a contradiction.

• s is a step by the writer: As Line 10 is just a local step, then all the invariants trivially
hold. So assume s is a step at Line 11 (CAS(X, x, i)). There are two cases depending upon
whether the CAS at Line 11, succeeds or not.

1. CAS in step s succeeds: Then PCw = 12 and X = w.pid in C.s, hence we have to
verify that I12...14 holds in C.s. Items 1-3 of I12...14 hold in C.s because Items 1-3 of
I10,11 hold in C. Items 4,5 of I12...14 trivially hold because X = w.pid ∧ PCw = 12 in
C.s.

2. CAS in step s does not succeed: This means that X 6= w.x in C and PCw = 6 in C.s.
As X 6= true in C and s does not change X , so X 6= true in C.s. So we have to verify
that I6 holds in C.s. Item 4 of I6 holds in C.s because Item 4 of I10,11 holds in C. Item
5 of I6 holds in C.s because X 6= w.x in C and Item 5 of I10,11 holds in C. Items 1-3
of I6 are simply implied by the fact that Items 1-3 of I10,11 hold in C.

24

Claim 3.16 If PCw ∈ {12 . . . 14} ∧X 6= true in C, then I holds in C.s

PROOF. As PCw ∈ {12 . . . 14} ∧X 6= true in C, we know that I12...14 holds in C. We will prove
this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: The proof this is identical to the case when PCw ∈ {10, 11} ∧X 6=
true.

• s is the step by the writer: If s is at Line 12 (if ¬Permit), by Item 3 of I12...14, Permit = f
in C, hence the writer will proceed to Line 13. If s is at Line 13, then depending upon the
value of C, the writer moves to Line 14 or Line 6. If it moves to Line 14, as no shared
variables have changed from C, I12...14 will still hold in C.s. If C > 0 in C, then PCw = 6 in
C.s. As X is still not true in C.s, then we have to verify that I6 holds in C.s. Items 1-4 of I6
still hold in C.s because they held in C and s did not change any shared variables at Line 13.
As C > 0 in C, by IG,R(PC ∈ {16.1 . . . 23, 27.1 . . . 29.2}) 6= ∅ in C.s. Hence, Item 5 of I
also holds in C.s.
Now say s is at Line 14 (CAS(X, i, true)), then there are two cases depending upon CAS in
s succeeds or not. We examine both of these cases below.

1. CAS in step s succeeds: Then PCw = 15 and X = true in C.s, hence we have to verify
that I15 holds in C.s. Items 1-3 of I15 hold in C.s because Items 1-3 of I12...14 hold in
C. Item 5 of I12...14 trivially holds in C.s because X = true in C.s. As the CAS at Line
14 succeeds in step s, it means X = w.pid in C. Hence by the fact that Item 5 of I12...14
holds in C, one can see that Item 4 of I15 will also hold in C.s.

2. CAS in step s does not succeed: This means that X 6= w.pid in C and PCw = 6 in C.s.
As X 6= true in C and s does not change X , so X 6= true in C.s. So we have to verify
that I6 holds in C.s. Item 5 of I6 holds in C.s because X 6= w.pid in C and Item 5 of
I12...14 holds in C. Items 1-4 of I6 still hold in C.s because Items 1-4 of I12...14 hold in
C and s did not change any shared variables.

Claim 3.17 If PCw ∈ {9 . . . 14} ∧X = true ∧ Permit = false in C, then I holds in C.s

PROOF.
As PCw ∈ {9 . . . 14} ∧ X = true ∧ Permit = false in C, we know that Iptf holds in C. We

will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: We have further two cases depending upon whether s changes
Permit to true or not. We will consider these two cases separately.

1. s does not set Permit to true: So we have to verify that Iptf still holds in C.s. Item 1
of Iptf still holds because a step by r cannot change Gate. As s does not set Permit
to true, it means that r did not execute Line 15 in s. Also, there is only one reader at

25

Line 15 in C, combining the previous two facts together we get |R(PC = 15)| = 1 in
C.s. Hence, Item 2 of Iptf still holds in C.s.
Now say Item 3 Iptf is violated in C.s. This means that in step s either r executed Line
17 and entered Line 18 with d = D, or r has sideD and it enters Line 22.1. The former
is not possible because Line 17 is d← D.
Now say r enters Line 22.1 in step s. This means s is a step at Line 21 or at Line 22.
If s is a step at Line 21, then r cannot be at Line 22.1 in C.s as X = true in C. As
R(d = D, PC ∈ {18 . . . 22}) = ∅ holds in C, one can see that if r takes a step at Line
22 (wait till Gate = d), it will have d = D. But in this case r cannot be at Line 22.1,
because Gate = D in C.

2. s sets Permit to true: This means that r is at Line 15 in C.s, and as Item 2 of Iptf holds
in C, it means that R(PC = 15) = {r} in C. As Permit is set to true in s, it means
that r executes step s at Line 15. Hence, there is no other reader at Line 15 in C.s, so
Item 2 of Iptf holds in C.s. Item 1 and 2 of Iptf are true in C.s for the same reason they
are true in the previous case when the step s by r does not set Permit to true.

• s is a step by the writer: Note that when the writer takes a step at Lines 9 through 14 and
X = tr, it cannot change any shared variables. Hence, either it stays at Lines 9 through 14
and Iptf trivially holds in C.s. Or, it moves to Line 6 and I6tf (which is identical to Iptf)
holds in C.s.

Claim 3.18 If PCw ∈ {9 . . . 14} ∧X = true ∧ Permit = true in C, then I holds in C.s

PROOF.
As PCw ∈ {9 . . . 14} ∧X = true∧Permit = true in C, we know that Iptt holds in C. We will

prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: s cannot change PCw and by item 2 of Iptt we know s cannot set
Permit to false. So we have to verify that Iptt holds in C.s.
The proof of why Item 1 and 3 of Iptt hold in C.s is exactly same as the case when s is a step
by the reader which does not change Permitwhen PCw ∈ {9 . . . 14}∧X = true∧Permit =
false. As X = true in C, so in step s, r cannot enter Line 15 by executing Line 14. Hence
Item 2 of Iptt holds in C.s

• s is a step by the writer: Note that when the writer takes a step at Lines 9 through 14 and
X = tr, it cannot change any shared variables. Hence, either it stays at Lines 9 through 14
and Iptt trivially holds in C.s. Or, it moves to Line 6 and I6tt (which is identical to Iptt)
holds in C.s.

Claim 3.19 If PCw = 15 in C, then I holds in C.s

26

PROOF.
As PCw = 15 in C, we know that I15 holds in C. We will prove this claim based on the whether

s is a step by a reader or the writer.

• s is a step by a reader r: s cannot change PCw, so we have to verify that I15 holds in C.s.
Item 1 of I15 trivially holds in C.s. As X = true in C, so in step s, r cannot enter Line 15 by
executing Line 14. Hence Item 2 of I15 holds in C.s. Similarly, as r is not at Line 15 in C,
Item 3 of I15 holds in C.s.
The proof of why Item 4 of I15 holds in C.s is exactly same as the proof for Item 3 of Iptf ,
when s is a step by the reader which does not change Permit when PCw ∈ {9 . . . 14}∧X =
true ∧ Permit = false. As X = true in C, so in step s, r cannot change X , hence Item 5 of
I15 holds in C.s.

• s is a step by the writer: When the writer performs a step at Line 15, it will set Permit to
true and move to Line 6. As X = true in C, one has to show that I6tt holds in C.s. One can
clearly see that Items 1, 2 and 4 of I15 imply Items 1,2 and 3 of I6tt (of Iptt). And as s does
not change any shared variables except Permit in step s, I6tt clearly holds in C.s.

Claim 3.20 If PCw = 6 ∧X 6= true in C, then I holds in C.s

PROOF.
As PCw = 6X 6= true in C, we know that I6 holds in C. We will prove this claim based on the

whether s is a step by a reader or the writer.

• s is a step by a reader r: There are again two cases here based on whether X is set to true
in s or not. If X is not set to true by s then we have to show that I6 still holds in C.s. On
the other hand if X is set to true by s then we have to show that I6tf holds in C.s. The
arguments to prove both these cases are identical to the case when s is step by a reader and
PCw ∈ {10, 11} ∧X 6= true.

• s is a step by the writer: If the writer executes Line 6 (wait till Permit), it will not change
the PCw or any shared variable. Hence, I6 will trivially hold in C.s.

Claim 3.21 If PCw = 6 ∧X = true ∧ Permit = false in C, then I holds in C.s

PROOF.
As PCw = 6X 6= true∧Permit = false in C, we know that I6tf holds in C. We will prove this

claim based on the whether s is a step by a reader or the writer.

27

• s is a step by a reader r: There are again two cases here based on whether Permit is set to
true in s or not. If Permit is not set to true by s then we have to show that I6tf still holds in
C.s.
On the other hand if Permit is set to true by s then we have to show that I6tt holds in C.s.
The arguments to prove both these cases are identical to the case when s is step by a reader
and PCw ∈ {9 . . . 14} ∧X = true ∧ Permit 6= true.

• s is a step by the writer: If the writer executes Line 6 (wait till Permit), it will not change
the PCw or any shared variable. Hence, I6 will trivially hold in C.s.

Claim 3.22 If PCw = 6 ∧X = true ∧ Permit = true in C, then I holds in C.s

PROOF.
As PCw = 6X 6= true ∧ Permit = true in C, we know that I6tt holds in C. We will prove this

claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: As there are no readers at Line 15 and X = true in C, the step s
cannot change Permit or X , hence we have to argue that I6tt still holds in C.s. The proof
of this is identical to the case when s is step by a reader and PCw ∈ {9 . . . 14} ∧ X =
true ∧ Permit = true.

• s is a step by the writer: In this case the writer will proceed to Line 7 or Line 25.1. So we
have to show that I7 or I25.1/2 holds in C.s. This is clearly true from the fact that I6tt (or,
Iptt) holds in C and the writer does not change any shared variables in s.

Claim 3.23 If PCw = 7 in C, then I holds in C.s

PROOF.
As PCw = 7 in C, we know that I7 holds in C. We will prove this claim based on the whether

s is a step by a reader or the writer.

• s is a step by a reader r: We have to argue that I7 still holds in C.s. The proof of this
is identical to the case when s is a step by a reader and PCw ∈ {9 . . . 14} ∧ X = true ∧
Permit = true (Iptt).

• s is a step by the writer: In this case the writer will proceed to Line 8. So we have to show
that I8 holds in C.s. The writer sets the Gate to D at Line 7. Hence, Item 1 of I8 holds in
C.s. Items 2-5 of I8 are implied by the fact that Items 2-5 of I7 hold in C.

28

Claim 3.24 If PCw = 8 in C, then I holds in C.s

PROOF.
As PCw = 8 in C, we know that I8 holds in C. We will prove this claim based on the whether

s is a step by a reader or the writer.

• s is a step by a reader r: We have to argue that I8 still holds in C.s. As no process is at Line
15 in C, so Permit will still remain true in C.s.
As X = true in C, r cannot do a successful CAS on X and proceed to Line 15. Hence, Item
2 and Item 4 of I8 still hold. Rest of the proof is identical to the case when s is step by a
reader and PCw ∈ {9 . . . 14} ∧X = true ∧ Permit = true (Iptt).

• s is a step by the writer: In this case the writer will proceed to Line 1. So we have to show
that I1,2,3 holds holds in C.s. The writer sets the X to w.pid at Line 8. And as no process
has pid = true, Item 2 of I1,2,3 holds in C.s. Items 1,3,4 of I1,2,3 hold in C.s because they
hold in C and the writer only changes X in s.

Claim 3.25 If PCw ∈ {25.1, 25.2} in C, then I holds in C.s.

PROOF. As PCw ∈ {25.1, 25.2} in C, so we know that I25.1/2 holds in C.
We will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: The argument is similar to the argument for I7.

• s is a step by the writer: In this case the writer will proceed to Line 25.2 (trivial) or Line
25.3. In the case of s moving to Line 25.3, the argument is similar to the argument for I7.
As for the additional item that R(PC ∈ {27.2 . . . 29.2}) = ∅, it is obvious from item 4 of
I25.1/2.

Claim 3.26 If PCw = 25.3 in C, then I holds in C.s.

PROOF. As PCw = 25.3 in C, so we know that I25.3 holds in C.
We will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: The argument is similar to the argument for I8. As for the additional
item that R(PC ∈ {27.2 . . . 29.2}) = ∅, it is true because any process entering that section
of code would have to move from Line 27.1 to Line 27.2 which is impossible by IG.

• s is a step by the writer: In this case the writer will proceed to Line 26.1, so we must show
Idown holds. Since I25.3 has the same properties as I8 and Idown has the same properties as
I1,2,3, the argument is similar to the argument for I8.

29

Claim 3.27 If PCw ∈ {26.1 . . . 29.2} in C, then I holds in C.s.

PROOF. As PCw ∈ {26.1 . . . 29.2} in C, so we know that Idown holds in C.
We will prove this claim based on the whether s is a step by a reader or the writer.

• s is a step by a reader r: The argument is similar to the argument for I1,2,3.

• s is a step by the writer: In this case the writer will proceed either to another line within
{26.1 . . . 29.2} or to Line 1. If the former, then the invariant is trivially true, since none of
those lines changes any of the shared variables referenced in the invariant. If the latter, we
have to show that I1,2,3 holds in C.s. Since the items of Idown are identical to the items of
I1,2,3 and since s does not change any of these items, I1,2,3 holds in C.s.

Hence, covering all these cases we have shown that if I holds in C then it also holds in C.s, for
every possible step s.

4.3 Proof of Theorem 1
As with the invariants, several of these lemmas are taken directly from Bhatt and Jayanti’s proof
with minor changes. The following lemmas are taken directly from Bhatt and Jayanti’s proof with
little or no change: Lemma 5, Lemma 6, Lemma 11.

The following lemmas are taken from from Bhatt and Jayanti’s proof with significant modifi-
cations: Lemma 4, Lemma 10, Lemma 8, Lemma 12

Before examining the lemmas, note the doorway and waiting room for each process. For the
writer, the doorway consists of lines 1 through 5, and the waiting room is line 6. For the readers,
the doorway consists of lines 16 through 21, and the waiting room consists of lines 22 through
22.2.

Lemma 4 (Mutual Exclusion) A reader r and a normal writer w cannot be in the CS together,
and a distinct process p and an upgraded process p′ cannot be in the CS together.

PROOF. One can easily see from I7 that there is no reader r in the CS (PCr ∈ {23, 27.1 . . . 29.2})
when w is in the CS. What about p and p′? By the restrictions in Figure 3, PCp′ = 28.1. As a result,
Iwri and Iblock hold, which means Iuwvt holds. In conjunction with IG2, this means that p cannot
be in the CS (PCp ∈ {23, 26.1 . . . 28.2}) when p′ is in the CS.

The following three lemmas will be useful to prove the rest of the properties.

Lemma 5 If at time t, a reader r is at Line 22 and PCw ∈ {1, 8} then Gate = D while r is at Line
22.

30

PROOF. As PCr = 22 ∧ PCw ∈ {1, 8}, so one can see from Item 3 of I1,2,3 and Item 4 of I8 that
variable d of r is equal toD. Also by Item 1 of I1,2,3 and I8, Gate = D. W.L.O.G., let d = D = 1,
to prove this lemma we will show that Gate is not changed while r is at Line 22.

Say Gate is set to 0, while r is still at Line 22. It means w executes Gate← 0 (Line 7) at some
time after t, such that PCr = 22, D = 0 at t. But by Item 4 of I7,R(d = 1,PC ∈ {18 . . . 23}) = ∅,
this is a contradiction.

Lemma 6 If at time t, a reader r is at Line 22 and some reader is in the CS, then r will advance
to Line 22.1 the next step it takes after t.

PROOF. We will prove this lemma by two different cases based on the value of X at t.
If at time t, X = true and a reader is in the CS (Line 23), from the inspection of all the

invariants one can clearly see that PCw = 8 at t. So from the Lemma 5, Gate = r.d and when r
steps, it will advance to Line 22.1.

Now assume, X 6= true at t. We prove this case by the following claim, thereby concluding
the Lemma.

Claim 6.1 If at time t a reader r is at Line 22 and X 6= true, then r will advance to Line 22.1 the
next step it takes after t.

PROOF. As PCr = 22, it means r previously observed X = true at Line 21. So if X 6= true at
time t, by the inspection of the code one can see that only the writer changes X when it is true
and it does that at Line 8. Hence, it means w executed Line 8 after r executes Line 21 and before
t. Hence, PCw = 8,PCr = 22 at some time before t. By the Lemma 5, Gate = r.d and r will
advance to Line 22.1 the next step it takes after t.

Lemma 7 If a reader r is in the waiting room when another process p is executing the Upgrade
section (PCp ∈ {27.1 . . . 27.5}), either r enters the CS before p finishes its current execution of the
Upgrade section or p fails in its current execution of the Upgrade section.

PROOF. Assume r does not enter the CS before p finishes its current execution of the Upgrade
section. Consider the following cases:

1. Consider the case where p is on Line 27.1, 27.2, or 27.3. By IG, C > 1 and will remain so
until after p finishes Upgrade. Therefore, p will finish Upgrade with a result of failure.

2. Consider the case where p is on Line 27.4 or 27.5. At the most recent time t that p read C on
Line 27.3, C = 1. C = 1 =⇒ PCr /∈ {16.1 . . . 22.2} at time t (by IG). Since r is now in
the waiting room, r must have executed Line 16.1 at some time t′ after time t. Furthermore,
no other process could have executed Line 27.2 after time t′ but before p completed Upgrade
(by IG2). Therefore, p cannot return from Upgrade with a result of success because the CAS
on Line 27.5 will fail.

31

Lemma 8 (Unstoppable Reader Property) If a reader r is in the waiting room (PCr ∈ {22 . . . 22.2})
at time t, then r is CS-enabled at t if any of the following holds

1. if a normal reader is in the CS or a downgraded process is in the CS at time t.

2. if an upgrading process is not guaranteed to succeed at its current execution of Upgrade at
time t.

3. if no upgraded process or upgrading process is in the CS or Exit section, r >rp w, and w is
not in the CS or the Exit section.

PROOF.

Claim 8.1 If a normal reader, upgrading process, or downgraded process is in the CS, there is no
process on Line 28.1.

PROOF. Obvious from Lemma 4 (Mutual Exclusion).

We will take each of the cases above in turn.

1. r could be on any of 22, 22.1, and 22.2:

22: By Lemma 6, if r is on Line 22, r will advance to Line 22.1 in one step.

22.1: Note thatU can only be set to WRITING when a process completes the Upgrade section.
Since a normal reader is in the CS, there can be no process at Lines 28.1 . . . 28.2 by IG2. By
the contrapositive of Iuw, at time t, U 6= WRITING and by Lemma 7, U 6= WRITING until r
enters the CS. Therefore, if r is on Line 22.1, r will enter the critical section in one step.

22.2: Finally, consider the case where r is on Line 22.2. By the contrapositive of Ivt, if there
is no process on Line 28.1 (which we have by Claim 8.1), either there is no reader on Line
22.2 or V = false. Since r is on Line 22.2, V must be false. By Istuck, as long as r remains
on 22.2, no reader can execute 27.4 and hence V cannot be set to true. Since V = false as
long as r remains on 22.2, r will enter the CS in one step.

2. Same as case 1.

3. As r >rp w, it means that either r doorway precedes w, or some process is in the CS when
r is in the waiting room (PCr ∈ {22 . . . 22.2}). r could be on any of 22, 22.1, and 22.2:

22: If r doorway precedes w, PCw = 1 (since r’s doorway doesn’t end until 22), hence by
Lemma 5, r should advance to Line 22.1 in its next step after t. If there is some time when
PCr = 22, w is in the Try section, and some other reader is in the CS, by Lemma 6, r should
advance to Line 22.1 in its next step after t.

22.1: Same as case 1.

22.2: Same as case 1.

32

Lemma 9 (Reader Priority Property) If r >rp w, then r enters the CS before w.

PROOF. If r >rp w, there are two possibilities: either r doorway preceded w or there was some
time when r was in the waiting room when another reader was in the CS and w was in the Try
section. We will consider these two cases separately:

1. r doorway preceded w. In other words, at some time t, PCr ∈ {22 . . . 22.2} when PCw = 1.
By I1,2,3, at time t, X /∈ PID(13, 14) and R(PC = 15) = ∅. As long as r does not enter
the CS, C > 0 by IG. Note also that X can only be set to a given i ∈ PID by process i.
Therefore, any process currently at Line 14 is guaranteed to fail the CAS at 14 and will not
advance to Line 15. Additionally, no process will be able to get past Line 13 until r enters
the CS. Since w must execute Line 4 at some time after t but before entering the CS, Permit
will be set to false and w will get stuck at Line 6. Since no one will be able to execute Line
15 before r enters the CS and Line 15 is the only place where Permit can be set to true, w
cannot enter the CS before r.

2. At some time t, r was in the waiting room, w was in the Try section, and some other reader
r′ was in the CS. If at time t, r′ is a normal reader or an upgrading reader not guaranteed
to succeed at its current execution of Upgrade, then by Lemma 8, we have r is enabled.
Therefore, by Lemma 4, w does not enter the CS before r.

Assume that at time t, r′ is an upgraded reader or a reader whose current execution of the
Upgrade section is guaranteed to succeed. By Lemma 6, r will advance to Line 22.1 the next
step it takes.

Before w enters the CS, r′ must leave the CS (by Lemma 4). At the time t′ that r′ begins
executing its Exit section, there are no readers at Line 27.4 or Line 27.5 (by IG2). Addition-
ally, no reader will be able to reach those lines until r enters the CS since C > 1 (by IG). As
soon as r′ executes the first line of its Exit section, r will be enabled to enter the CS since V
will be false and no process will be able to set it to true until r enters the CS. Therefore, by
Lemma 4, w does not enter the CS before r.

Before we prove Livelock freedom we show that no reader starves.

Lemma 10 If a reader r is in the Try section and no process crashes, then r eventually enters the
CS.

PROOF. Suppose r stays in the Try section forever. Then we first claim that the writer w also
stays in the Try section forever. This is true because, if r keeps taking steps then it will eventually
complete its doorway. Now if w ever enters the Remainder section after r has completed the
doorway, by Lemma 9, w cannot enter the CS before r. Therefore, both r and w will be in the Try
section forever after some time t, which means PCr ∈ {22 . . . 22.2},PCw = 6 and Permit = false
forever after t.

33

If r is at Line 22 and r continues to take steps, X = true by Claim 6.1. So PCw = 6, X = true
and Permit = false forever after t. But looking at the invariant for this case (I6tf), one can see
that some reader is at Line 15 and it will eventually execute Line 15 and set Permit to true. Which
is a contradiction to the fact that Permit = f for all times after t. Therefore r cannot be stuck at
22 forever.

If r is stuck at 22.2, V must be true. By Ivt, there must be a process p′ at Line 28.1 who will
set V to false. By IG2, there can be no other process p s.t. PCp ∈ {27.2 . . . 27.5} when p′ is at Line
28.1. Furthermore, any process to complete the Upgrade section before r enters the CS will fail on
Line 27.1 because C > 1 by IG. Therefore, if r is stuck on 22.2, V will eventually be set to false
and cannot be changed back to true until after r enters the CS. Therefore, r can’t be stuck at 22.2
forever.

Lemma 11 (Livelock freedom) If some process is in the Try section and no process crashes, then
some process enters the CS eventually.

PROOF. In the previous lemma we have shown that no reader starves. So to prove this lemma, we
have to show that if no reader is active for all times after some time (say t), then the writer cannot
stay in the Try section forever.

Say the writer stays in the Try section forever after all time t′ > t. As the writer can stay only
stay at Line 6 in the Try section forever, it means that there is some time t∗ > t′ > t, such that for
all times after t∗, PCw = 6, P ermit = f and no readers are active.

We first claim that X = true at t∗. Say X 6= true at t∗, as PCw = 6 at t∗, by Item 5 of I6, one
can see that some reader should be active at t∗, which is a contradiction.

So X 6= true ∧ PCw = 6 ∧ Permit = false at t∗. By Item 5 of I6tf one can again see that
some reader should be active, which is a contradiction. Hence, it means that in the absence of the
readers, the writer cannot stay in the Try section forever.

Lemma 12 (Constant RMR complexity) The algorithm given in Figure 2 has O(1) RMR com-
plexity in CC model.

PROOF.
As all procedures except Reader-Try and Writer-Try have a constant number of steps

and the doorways within these sections have a constant number of steps, all we have to show is
that the RMR complexity when the processes are spinning is a constant.

In case of Writer-Try the writer waits for Permit to be true (Line 6). The only place a
reader can change Permit is Line 15, and it will be changed to true. Therefore, the next time the
writer reads the variable, it will step past Line 6.

In the Reader-Try, say a reader r is on Line 22. W.L.O.G., say r is waiting for Gate to be
set to 1. By the arguments similar to the proof of Lemma 5, we know that once the Gate is set to
1 while r is still at Line 22, it will not change to 0. Also by the inspection of the algorithm one
can see Gate is never overwritten with the same value, more precisely, the writer writes alternating
values (1 and 0) into theGate. Combining the two facts together one can see that while r is at Line
22, only a single write operation is performed on Gate.

34

Say a reader r is on Line 22.2. By Istuck, no process can be at Line 27.4 or 27.5, and since
C > 0 (by IG), no process will be able to reach Line 27.4 or 27.5, and hence no process will be
able to set V to true until r steps past Line 22.2. If at time t, V = false, then r will move past 22.2
next time it takes a step. If not, eventually V will be set to false. When r reads V = false, it will
step past Line 22.2, so it will only read V as false once.

Bounded Exit (P2), Bounded Upgrade (P9′), and Bounded Downgrade (P10′) are self-evident.
First-In-First-Enabled (P4) and Concurrent Entering (P5′) are implied by Unstoppable Reader Pri-
ority (RP2′). Finally, Upgradeability (P8′) is obvious from IG and observation of the algorithm.
Therefore, the algorithm satisfies all properties specified in Theorem 1.

5 Extension to Multi-Writer Algorithm
Bhatt and Jayanti proved that the Single-Writer algorithm can easily be extended to a Multi-Writer
version by wrapping the Single-Writer writer lock in a Mutex Lock satisfying starvation freedom,
FCFS, and bounded exit [2]. We will not reproduce that work here, since we do not need to make
any modifications. We will only comment that a writer does not release the aforementioned Mutex
Lock until after it has left the CS of the single-writer algorithm, even if it downgrades. With this
care, Bhatt and Jayanti’s method of creating a Multi-Writer lock applies to the algorithm in Figure
2.

6 Model Checking
As an additional method of verification of the correctness of the algorithm, we used TLA+ and the
TLC model checker [7]. TLA allows for formal specification of algorithms and their properties.
We implemented the algorithm using the PlusCal language which allows a user to implement a
multi-process algorithm that can be easily converted to TLA [7]. We then formulated the Mutual
Exclusion invariant in TLA and ran the TLC model checker with four processes, three readers and a
writer. TLC tries every possible interleaving of processes executing the algorithm and ensures that
certain specified invariants hold throughout the execution; in our case, we ensure Mutual Exclusion
(P1′). TLC also has deadlock checking built in, so we also ensure Livelock Freedom (P6). After
running for over two days and processing a billion distinct states (1,081,613,412 was the final
tally), TLC had found no violations of Mutual Exclusion or situations where deadlock occurred–at
this point, the program was terminated due to lack of time. While not a proof of correctness by any
means, this check does provide additional confidence that the algorithm is correct.

35

References
[1] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and “writers”.

Commun. ACM, 14(10):667–668, 1971.

[2] Vibhor Bhatt and Prasad Jayanti. Constant RMR solutions to reader writer synchronization.
Technical Report TR2010-662, Dartmouth College, February 2010.

[3] Vibhor Bhatt and Prasad Jayanti. Constant RMR solutions to reader writer synchronization.
In PODC ’10, pages 468–477, 2010.

[4] Vibhor Bhatt. Reader-Writer Lock: Rigorous Formulations and Constant RMR Algorithms.
PhD thesis, Dartmouth College, January 2011.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun. ACM,
8(9):569, 1965.

[6] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974.

[7] Leslie Lamport. A PlusCal User’s Manual: C-Syntax Version 1.5, April 2011.

36

	Reader-Writer Exclusion Supporting Upgrade and Downgrade with Reader-Priority
	Recommended Citation

	tmp.1596484807.pdf.YmEN1

