73 research outputs found

    EGAM Induced by Energetic-electrons and Nonlinear Interactions among EGAM, BAEs and Tearing Modes in a Toroidal Plasma

    Full text link
    In this letter, it is reported that the first experimental results are associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic plasma. The energetic-electrons are generated by parallel electric fields during magnetic reconnection associated with tearing mode (TM). The eEGAM localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very different from one excited by the drift-wave turbulence in the edge plasma. The analysis indicated that the eEGAM is provided with the magnetic components, whose intensities depend on the poloidal angles, and its mode numbers are jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM, BAEs and strong tearing modes (TMs). These new findings shed light on the underlying physics mechanism for the excitation of the low frequency (LF) Alfv\'enic and acoustic uctuations.Comment: 5 pages,4 figure

    ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory

    Full text link
    We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines. The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease. These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced pedestal profile to refill. An increase in fELMSMBI/fELM0 and a decrease in the energy loss per ELM ΔWELM were achieved in both machines. Physical insight was gleaned from studies of density and vΦ (toroidal rotation velocity) evolution, particle flux and turbulence spectra, divertor heat load. The characteristic gradients of the pedestal density soften and a change in vΦ was observed during a τI time. The spectra of the edge particle flux Γ ∼ 〈ṽrñe〉 and density fluctuation with and without SMBI were measured in HL-2A and in KSTAR, respectively. A clear phenomenon observed is the decrease in divertor heat load during the τI time in HL-2A. Similar results are the profiles of saturation current density Jsat with and without SMBI in KSTAR. We note that τI/τp (particle confinement time) is close to ∼1, although there is a large difference in individual τI between the two machines. This suggests that τI is strongly related to particle-transport events. Experiments and analysis of a simple phenomenological model support the important conclusion that ELM mitigation by SMBI results from an increase in higher frequency fluctuations and transport events in the pedestal. © 2014 IAEA, Vienna

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    Solubility and thermodynamic properties of carbonate-bearing hydrotalcite-pyroaugite solid solutions with a 3:1 Mg/(Al+Fe) mole ratio

    No full text
    The naturally occurring layered double hydroxides (LDH, or anionic clays) are of particular interest in environmental geochemistry because of their ability to retain hazardous cations and especially anions. However, incorporation of these minerals into predictive models of water-rock interaction in contaminant environments, including radioactive-waste repositories, is hampered by a lack of thermodynamic and stability data. To fill part of this gap the present authors have derived properties of one of the complex multicomponent solid solutions within the LDH family: the hydrotalcite-pyroaurite series, Mg (Al -xFe )(OH) (CO ) ·2.5H O. Members of the hydrotalcite-pyroaurite series with fixed Mg /(Al +Fe ) = 3 and various Fe /(Fe +Al ) ratios were synthesized by co-precipitation and dissolved in long-term experiments at 23±2°C and pH = 11.40±0.03. The chemical compositions of co-existing solid and aqueous phases were determined by inductively coupled plasma-optical emission spectroscopy, thermogravimetric analysis, and liquid scintillation counting of Fe tracers; X-ray diffraction and Raman were used to characterize the solids. Based on good evidence for reversible equilibrium in the experiments, the thermodynamic properties of the solid solution were examined using total-scale Lippmann solubility products, ΣΠ . No significant difference was observed between values of σΠ from co-precipitation and from dissolution experiments throughout the whole range of Fe/Al ratios. A simple ideal solid-solution model with similar end-member ΣΠ values (a regular model with 0 < W < 2 kJ mol ) was sufficient to describe the full range of intermediate mineral compositions. In turn, this yielded the first estimate of the standard Gibbs free energy of the pyroaurite end member, G = -3882.60±2.00 kJ/mol, consistent with G =-4339.85 kJ/mol of the hydrotalcite end member, and with the whole range of solubilities of the mixed phases. The molar volumes of the solid-solution at standard conditions were derived from X-ray data. Finally, Helgeson's method was used to extend the estimates of standard molar entropy and heat capacity of the end members over the pressure-temperature range 0-70°C and 1-100 bar
    • …
    corecore