242 research outputs found

    Bonded and Stitched Composite Structure

    Get PDF
    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure

    Methods for Assessing Honeycomb Sandwich Panel Wrinkling Failures

    Get PDF
    Efficient closed-form methods for predicting the facesheet wrinkling failure mode in sandwich panels are assessed. Comparisons were made with finite element model predictions for facesheet wrinkling, and a validated closed-form method was implemented in the HyperSizer structure sizing software

    UN 'households' and local interpretations in Burkina Faso, Senegal, Uganda and Tanzania

    Get PDF
    Over the half century since Independence in most African states the UN Statistical Division has played an increasing role in getting member countries to standardise and streamline their data collection and in particular the definitions used for data collection. A key concept in censuses and surveys is the definition of household since this determines the units for which much data are collected and analysed, and thus influences the data which are the basis for many policies. In this paper we analyse the evolution of the UN household definition over this time period and what aspects of the household this definition appears to be trying to capture. Using detailed census and survey documentary data (from questionnaires, enumerator and supervisor manuals etc) for 4 African countries (Burkina Faso, Senegal, Uganda and Tanzania) we examine the extent to which each country has actually implemented this definition in different data collection activities over the last 50 years, highlighting differences between Anglophone and Francophone practice but also noting where country level idiosyncrasies and adaptations to local conditions are priorities. In a final stage perspectives provided from in-depth interviews with key informants from different levels within the hierarchy of statistical offices in each country, demonstrate the variability in the importance accorded to the UN harmonisation aims and the problems which arise when these standardised approaches interact with local norms and living arrangements

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice

    Full text link
    We have measured activation gaps for odd-integer quantum Hall states in a unidirectional lateral superlattice (ULSL) -- a two-dimensional electron gas (2DEG) subjected to a unidirectional periodic modulation of the electrostatic potential. By comparing the activation gaps with those simultaneously measured in the adjacent section of the same 2DEG sample without modulation, we find that the gaps are reduced in the ULSL by an amount corresponding to the width acquired by the Landau levels through the introduction of the modulation. The decrement of the activation gap varies with the magnetic field following the variation of the Landau bandwidth due to the commensurability effect. Notably, the decrement vanishes at the flat band conditions.Comment: 7 pages, 6 figures, minor revisio

    How Many Species Are There on Earth and in the Ocean?

    Get PDF
    The diversity of life is one of the most striking aspects of our planet; hence knowing how many species inhabit Earth is among the most fundamental questions in science. Yet the answer to this question remains enigmatic, as efforts to sample the world's biodiversity to date have been limited and thus have precluded direct quantification of global species richness, and because indirect estimates rely on assumptions that have proven highly controversial. Here we show that the higher taxonomic classification of species (i.e., the assignment of species to phylum, class, order, family, and genus) follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated. This approach was validated against well-known taxa, and when applied to all domains of life, it predicts ∼8.7 million (±1.3 million SE) eukaryotic species globally, of which ∼2.2 million (±0.18 million SE) are marine. In spite of 250 years of taxonomic classification and over 1.2 million species already catalogued in a central database, our results suggest that some 86% of existing species on Earth and 91% of species in the ocean still await description. Renewed interest in further exploration and taxonomy is required if this significant gap in our knowledge of life on Earth is to be closed
    • …
    corecore