8 research outputs found

    Distribution of Mycobacterium ulcerans in Buruli Ulcer Endemic and Non-Endemic Aquatic Sites in Ghana

    Get PDF
    Mycobacterium ulcerans, the causative agent of Buruli ulcer, is an emerging environmental bacterium in Australia and West Africa. The primary risk factor associated with Buruli ulcer is proximity to slow moving water. Environmental constraints for disease are shown by the absence of infection in arid regions of infected countries. A particularly mysterious aspect of Buruli ulcer is the fact that endemic and non-endemic villages may be only a few kilometers apart within the same watershed. Recent studies suggest that aquatic invertebrate species may serve as reservoirs for M. ulcerans, although transmission pathways remain unknown. Systematic studies of the distribution of M. ulcerans in the environment using standard ecological methods have not been reported. Here we present results from the first study based on random sampling of endemic and non-endemic sites. In this study PCR-based methods, along with biofilm collections, have been used to map the presence of M. ulcerans within 26 aquatic sites in Ghana. Results suggest that M. ulcerans is present in both endemic and non-endemic sites and that variable number tandem repeat (VNTR) profiling can be used to follow chains of transmission from the environment to humans. Our results suggesting that the distribution of M. ulcerans is far broader than the distribution of human disease is characteristic of environmental pathogens. These findings imply that focal demography, along with patterns of human water contact, may play a major role in transmission of Buruli ulcer

    Evaluating the Virology and Evolution of Seasonal Human Coronaviruses Associated with the Common Cold in the COVID-19 Era

    No full text
    Approximately 15–30% of all cases of the common cold are due to human coronavirus infections. More recently, the emergence of the more severe respiratory coronaviruses, SARS-CoV and MERS-CoV, have highlighted the increased pathogenic potential of emergent coronaviruses. Lastly, the current emergence of SARS-CoV-2 has demonstrated not only the potential for significant disease caused by emerging coronaviruses, but also the capacity of novel coronaviruses to promote pandemic spread. Largely driven by the global response to the COVID-19 pandemic, significant research in coronavirus biology has led to advances in our understanding of these viruses. In this review, we evaluate the virology, emergence, and evolution of the four endemic coronaviruses associated with the common cold, their relationship to pandemic SARS-CoV-2, and discuss the potential for future emergent human coronaviruses

    Murine Hepatitis Virus Nonstructural Protein 4 Regulates Virus-Induced Membrane Modifications and Replication Complex Functionâ–ż

    No full text
    Positive-strand RNA viruses induce modifications of cytoplasmic membranes to form replication complexes. For coronaviruses, replicase nonstructural protein 4 (nsp4) has been proposed to function in the formation and organization of replication complexes. Murine hepatitis virus (MHV) nsp4 is glycosylated at residues Asn176 (N176) and N237 during plasmid expression of nsp4 in cells. To test if MHV nsp4 residues N176 and N237 are glycosylated during virus replication and to determine the effects of N176 and N237 on nsp4 function and MHV replication, alanine substitutions of nsp4 N176, N237, or both were engineered into the MHV-A59 genome. The N176A, N237A, and N176A/N237A mutant viruses were viable, and N176 and N237 were glycosylated during infection of wild-type (wt) and mutant viruses. The nsp4 glycosylation mutants exhibited impaired virus growth and RNA synthesis, with the N237A and N176A/N237A mutant viruses demonstrating more profound defects in virus growth and RNA synthesis. Electron microscopic analysis of ultrastructure from infected cells demonstrated that the nsp4 mutants had aberrant morphology of virus-induced double-membrane vesicles (DMVs) compared to those infected with wt virus. The degree of altered DMV morphology directly correlated with the extent of impairment in viral RNA synthesis and virus growth of the nsp4 mutant viruses. The results indicate that nsp4 plays a critical role in the organization and stability of DMVs. The results also support the conclusion that the structure of DMVs is essential for efficient RNA synthesis and optimal replication of coronaviruses

    Development of Mouse Hepatitis Virus Chimeric Reporter Viruses Expressing the 3CLpro Proteases of Human Coronaviruses HKU1 and OC43 Reveals Susceptibility to Inactivation by Natural Inhibitors Baicalin and Baicalein

    No full text
    The recent emergence of SARS-CoV-2 in 2019 has highlighted the necessity of antiviral therapeutics for current and future emerging coronaviruses. Recently, the traditional herbal medicines baicalein, baicalin, and andrographolide have shown inhibition against the main protease of SARS-CoV-2. This provides a promising new direction for COVID-19 therapeutics, but it remains unknown whether these three substances inhibit other human coronaviruses. In this study, we describe the development of novel chimeric mouse hepatitis virus (MHV) reporters that express firefly luciferase (FFL) and the 3CLpro proteases of human coronaviruses HKU1 and OC43. These chimeric viruses were used to determine if the phytochemicals baicalein, baicalin, and andrographolide are inhibitory against human coronavirus strains HKU1 and OC43. Our data show that both baicalein and baicalin exhibit inhibition towards the chimeric MHV strains. However, andrographolide induces cytotoxicity and failed to demonstrate selective toxicity towards the viruses. This study reports the development and use of a safe replicating reporter platform to investigate potential coronavirus 3CLpro inhibitors against common-cold human coronavirus strains HKU1 and OC43
    corecore