31 research outputs found

    Isolation and purification of Cu-free methanobactin from Methylosinus trichosporium OB3b

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The isolation of highly pure copper-free methanobactin is a prerequisite for the investigation of the biogeochemical functions of this chalkophore molecule produced by methane oxidizing bacteria. Here, we report a purification method for methanobactin from <it>Methylosinus trichosporium </it>OB3b cultures based on reversed-phase HPLC fractionation used in combination with a previously reported resin extraction. HPLC eluent fractions of the resin extracted product were collected and characterized with UV-vis, FT-IR, and C-1s NEXAFS spectroscopy, as well as with elemental analysis and ESI-MS.</p> <p>Results</p> <p>The results showed that numerous compounds other than methanobactin were present in the isolate obtained with resin extraction. Molar C/N ratios, mass spectrometry measurements, and UV-vis spectra indicated that methanobactin was only present in one of the HPLC fractions. On a mass basis, methanobactin carbon contributed only 32% to the total organic carbon isolated with resin extraction. Our spectroscopic results implied that besides methanobactin, the organic compounds in the resin extract comprised breakdown products of methanobactin as well as polysaccharide-like substances.</p> <p>Conclusion</p> <p>Our results demonstrate that a purification step is indispensable in addition to resin extraction in order to obtain pure methanobactin. The proposed HPLC purification procedure is suitable for semi-preparative work and provides copper-free methanobactin.</p

    Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps

    Get PDF
    Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites

    Life in the extreme: thermoacidophilic methanotrophy

    No full text
    Aerobic methane-oxidizing bacteria (methanotrophs) have a key role in the global carbon cycle, converting methane to biomass and carbon dioxide. Although these bacteria have been isolated from many environments, until recently, it was not known if they survived, much less thrived in thermoacidic environments, that is, locations with pH values of approximately 1 and temperatures greater than 50 degrees C. Recently, three independent studies have isolated unusual methanotrophs from such extreme environments, expanding the known functional and phylogenetic diversity of methanotrophs

    Methanobactin, a Copper-Acquisition Compound from Methane-Oxidizing Bacteria

    No full text
    corecore