140 research outputs found
Prevalence of Fabry disease and GLA variants in young patients with acute stroke: the challenge to widen the screening. The Fabry-Stroke Italian Registry
Background: Fabry disease (FD) is a treatable X-linked lysosomal storage disorder caused by GLA gene variants leading to alpha-galactosidase A deficiency. FD is a rare cause of stroke, and it is still controversial whether in stroke patients FD should be searched from the beginning or at the end of the diagnostic workup (in cryptogenic strokes). Methods: Fabry-Stroke Italian Registry is a prospective, multicentric screening involving 33 stroke units. FD was sought by measuring Ξ±-galactosidase A activity (males) and by genetic tests (males with reduced enzyme activity and females) in patients aged 18β60 years hospitalized for TIA, ischemic stroke, or intracerebral hemorrhage. We diagnosed FD in patients with 1) already known pathogenic GLA variants; 2) novel GLA variants if additional clinical, laboratory, or family-derived criteria were present. Results: Out of 1906 patients, we found a GLA variant in 15 (0.79%; 95%CI 0.44β1.29) with a certain FD diagnosis in 3 (0.16%; 95%CI 0.03β0.46) patients, none of whom had hemorrhage. We identified 1 novel pathogenic GLA variant. Ischemic stroke etiologies in carriers of GLA variants were: cardioaortic embolism (33%), small artery occlusion (27%), other causes (20%), and undetermined (20%). Mild severity, recurrence, previous TIA, acroparesthesias, hearing loss, and small artery occlusion were predictors of GLA variant. Conclusion: In this large multicenter cohort the frequency of FD and GLA variants was consistent with previous reports. Limiting the screening for GLA variants to patients with cryptogenic stroke may miss up to 80% of diagnoses. Some easily recognizable clinical features could help select patients for FD screening
SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes
Contains fulltext :
94049.pdf (publisher's version ) (Open Access
Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy
Estrogen receptor (ER) has a crucial role in normal breast development and is expressed in the most common breast cancer subtypes. Importantly, its expression is very highly predictive for response to endocrine therapy. Current endocrine therapies for ER-positive breast cancers target ER function at multiple levels. These include targeting the level of estrogen, blocking estrogen action at the ER, and decreasing ER levels. However, the ultimate effectiveness of therapy is limited by either intrinsic or acquired resistance. Identifying the factors and pathways responsible for sensitivity and resistance remains a challenge in improving the treatment of breast cancer. With a better understanding of coordinated action of ER, its coregulatory factors, and the influence of other intracellular signaling cascades, improvements in breast cancer therapy are emerging
Replacement of RNA hairpins by in vitro selected tetranucleotides.
An in vitro selection method based on the autolytic cleavage of yeast tRNA(Phe) by Pb2+ was applied to obtain tRNA derivatives with the anticodon hairpin replaced by four single-stranded nucleotides. Based on the rates of the site-specific cleavage by Pb2+ and the presence of a specific UV-induced crosslink, certain tetranucleotide sequences allow proper folding of the rest of the tRNA molecule, whereas others do not. One such successful tetramer sequence was also used to replace the acceptor stem of yeast tRNA(Phe) and the anticodon hairpin of E.coli tRNA(Phe) without disrupting folding. These experiments suggest that certain tetramers may be able to replace structurally nonessential hairpins in any RNA
Serum N-acetyl aspartate (NAA) levels differ in multiple sclerosis (MS) and neuromyelitis optica (NMO).
NAA is considered a marker of functional integrity of neuronal
metabolism. It is synthesized in neuronal mitochondria, catabolized
in oligodendrocytes and it reaches the blood compartment through
the astrocytes. No reports investigating NAA levels both in serum
and in cerebrospinal fluid (CSF) of patients with demyelinating
diseases are available
- β¦