417 research outputs found

    Evaluation of MODIS and VIIRS Cloud-Gap-Filled Snow-Cover Products for Production of an Earth Science Data Record

    Get PDF
    MODerate resolution Imaging Spectroradiometer (MODIS) cryosphere products have been available since 2000 following the 1999 launch of the Terra MODIS and the 2002 launch of the Aqua MODIS and include global snow-cover extent (SCE) (swath, daily, and 8 d composites) at 500 m and 5 km spatial resolutions. These products are used extensively in hydrological modeling and climate studies. Reprocessing of the complete snow-cover data record, from Collection 5 (C5) to Collection 6 (C6) and Collection 6.1 (C6.1), has provided improvements in the MODIS product suite. Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Collection 1 (C1) snow-cover products at a 375 m spatial resolution have been available since 2011 and are currently being reprocessed for Collection 2 (C2). Both the MODIS C6.1 and the VIIRS C2 products will be available for download from the National Snow and Ice Data Center beginning in early 2020 with the complete time series available in 2020. To address the need for a cloud-reduced or cloud-free daily SCE product for both MODIS and VIIRS, a daily cloud-gap-filled (CGF) snow-cover algorithm was developed for MODIS C6.1 and VIIRS C2 processing. MOD10A1F (Terra) and MYD10A1F (Aqua) are daily, 500 m resolution CGF SCE map products from MODIS. VNP10A1F is the daily, 375 m resolution CGF SCE map product from VIIRS. These CGF products include quality-assurance data such as cloud-persistence statistics showing the age of the observation in each pixel. The objective of this paper is to introduce the new MODIS and VIIRS standard CGF daily SCE products and to provide a preliminary evaluation of uncertainties in the gap-filling methodology so that the products can be used as the basis for a moderate-resolution Earth science data record (ESDR) of SCE. Time series of the MODIS and VIIRS CGF products have been developed and evaluated at selected study sites in the US and southern Canada. Observed differences, although small, are largely attributed to cloud masking and differences in the time of day of image acquisition. A nearly 3-month time-series comparison of Terra MODIS and S-NPP VIIRS CGF snow-cover maps for a large study area covering all or parts of 11 states in the western US and part of southwestern Canada reveals excellent correspondence between the Terra MODIS and S-NPP VIIRS products, with a mean difference of 11 070 sqkm, which is 0.45 % of the study area. According to our preliminary validation of the Terra and Aqua MODIS CGF SCE products in the western US study area, we found higher accuracy of the Terra product compared with the Aqua product. The MODIS CGF SCE data record beginning in 2000 has been extended into the VIIRS era, which should last at least through the early 2030s

    Resource Flows Among Three Generations in Guatemala Study (2007–08): Definitions, tracking, data collection, coverage, and attrition

    Get PDF
    The allocation of resources across generations and the consequences of these allocations represent a research agenda with significant policy implications. At the same time, their empirical investigation imposes immense data requirements, and therefore data collection challenges. In this paper, we describe how we met these challenges, in the Resource Flows Among Three Generations in Guatemala Study, or IGT, carried out in 2006–07. In doing so, we provide a guide for using and interpreting the data collected as part of IGT, as well as an example for others interested in implementing research projects on similar themes elsewhere. Complex research topics, across generations and across a range of possible measures of well-being, led to a relatively complicated sample selection process and survey design, with component modules that were applicable to different “types” of sample members, depending on their generational status and age, and who often lived in different locations. It also led to a wide set of survey domains, ranging from economic, educational, and psychological surveys to clinical medical exams for both the young and the elderly. Survey coverage was above 85% of the targeted sample for most categories of respondents and most modules, and a number of safeguards were in place to ensure high quality data. Biases due to attrition, measured against the original 1970s rounds of survey work upon which IGT built, while present, should not reduce substantially the validity of research findings to come from this rich sample. The extent to which this is true, though, may vary depending on the topic under consideration and the controls included in the analyses.

    Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing in the Wind River Range, Wyoming

    Get PDF
    MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S

    A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Get PDF
    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products

    Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L11501, doi:10.1029/2006GL026444.Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.Support for this work was provided by NASA’s Earth Observing System and Cryospheric Sciences Programs

    A Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Get PDF
    We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. Reference

    Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Get PDF
    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S

    Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet

    Get PDF
    Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated

    Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Get PDF
    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. First we provide comparisons between Terra and Aqua swath-based ISTs at approximately 14:00 Local Solar Time, reprojected to 12.5 km polar stereographic cells. Results show good correspondence when Terra and Aqua data were acquired within 2 hrs of each other. For example, for a cell centered over Summit Camp (72.58 N, 38.5 W), the average agreement between Terra and Aqua ISTs is 0.74 K (February 2003), 0.47 K (April 2003), 0.7 K (August 2003) and 0.96 K (October 2003) with the Terra ISTs being generally lower than the Aqua ISTs. More precise comparisons will be calculated using pixel data at the swath level, and correspondence between Terra and Aqua IST is expected to be closer. (Because of cloud cover and other considerations, only a few common cloud-free swaths are typically available for each month for comparison.) Additionally, previous work comparing land-surface temperatures (LSTs) from the standard MODIS LST product and in-situ surface-temperature data at Summit Camp on the Greenland Ice Sheet show that Terra MODIS LSTs are about 3 K lower than in-situ temperatures at Summit Camp, during the winter of 2008-09. This work will be repeated using both Terra and Aqua IST pixel data (in place of LST data). In conclusion, we demonstrate that the uncertainties in the CDR will be well characterized as we work through the various facets of its validation
    corecore