7 research outputs found

    Preparation of double emulsions using hybrid polymer/silica particles: New pickering emulsifiers with adjustable surface wettability

    Get PDF
    A facile route for the preparation of water-in-oil-in-water (w/o/w) double emulsions is described for three model oils, namely, n-dodecane, isopropyl myristate, and isononyl isononanoate, using fumed silica particles coated with poly(ethylene imine) (PEI). The surface wettability of such hybrid PEI/silica particles can be systematically adjusted by (i) increasing the adsorbed amount of PEI and (ii) addition of 1-undecanal to the oil phase prior to homogenization. In the absence of this long-chain aldehyde, PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) produce o/w Pickering emulsions in all cases. In the presence of 1-undecanal, this reagent reacts with the primary and secondary amine groups on the PEI chains via Schiff base chemistry, which can render the PEI/silica hybrid particles sufficiently hydrophobic to stabilize w/o Pickering emulsions at 20 °C. Gas chromatography, 1H NMR and X-ray photoelectron spectroscopy provide compelling experimental evidence for this in situ surface reaction, while a significant increase in the water contact angle indicates markedly greater hydrophobic character for the PEI/silica hybrid particles. However, when PEI/silica hybrid particles are prepared using a relatively low adsorbed amount of PEI (PEI/silica mass ratio = 0.075) only o/w Pickering emulsions are obtained, since the extent of surface modification achieved using this Schiff base chemistry is insufficient. Fluorescence microscopy and laser diffraction studies confirm that highly stable w/o/w double emulsions can be achieved for all three model oils. This is achieved by first homogenizing the relatively hydrophobic PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) with an oil containing 3% 1-undecanal to form an initial w/o emulsion, followed by further homogenization using an aqueous dispersion of relatively hydrophilic PEI/silica particles (PEI/silica mass ratio = 0.075). Dye release from the internal aqueous cores into the aqueous continuous phase was monitored by visible absorption spectroscopy. These studies indicate immediate loss of 12-18% dye during the high speed homogenization that is required for double emulsion formation, but no further dye release is observed at 20 °C for at least 15 days thereafter

    The processing of symbolic and nonsymbolic ratios in school-age children

    Get PDF
    This study tested the processing of ratios of natural numbers in school-age children. Nine- and eleven-year-olds were presented collections made up of orange and grey dots (i.e., nonsymbolic format) and fractions (i.e., symbolic format). They were asked to estimate ratios between the number of orange dots and the total number of dots and fractions by producing an equivalent ratio of surface areas (filling up a virtual glass). First, we tested whether symbolic notation of ratios affects their processing by directly comparing performance on fractions with that on dot sets. Second, we investigated whether children’s estimates of nonsymbolic ratios of natural numbers relied at least in part on ratios of surface areas by contrasting a condition in which the ratio of surface areas occupied by dots covaried with the ratio of natural numbers and a condition in which this ratio of surface areas was kept constant across ratios of natural numbers. The results showed that symbolic notation did not really have a negative impact on performance among 9-year-olds, while it led to more accurate estimates in 11-year-olds. Furthermore, in dot conditions, children’s estimates increased consistently with ratios between the number of orange dots and the total number of dots even when the ratio of surface areas was kept constant but were less accurate in that condition than when the ratio of surface areas covaried with the ratio of natural numbers. In summary, these results indicate that mental magnitude representation is more accurate when it is activated from symbolic ratios in children as young as 11 years old and that school-age children rely at least in part on ratios of surface areas to process nonsymbolic ratios of natural numbers when given the opportunity to do so
    corecore