1,428 research outputs found

    The subcellular localization of the G-protein Gi alpha in the basal ganglia reveals its potential role in both signal transduction and vesicle trafficking

    Get PDF
    The G-protein Gi is known to mediate signal transduction in cells by coupling its 41 kDa alpha-subunit to plasma membrane-bound receptors and inhibiting adenylyl cyclase or affecting ion channel function. Although this G-protein has been functionally associated with D2/dopamine and mu-opioid receptors in striatal membranes, its localization to neurons of the neostriatum, a brain region rich in adenylyl cyclase activity, has not been established. Light and electron microscopic study of the basal ganglia was conducted using the immunoperoxidase method and an antiserum directed against the alpha-subunit of Gi. In the neostriatum, immunoreactivity was localized to medium-sized spiny and aspiny neurons and axon terminals that formed symmetric synapses. Some astrocytes and glial processes that encapsulated axospinous complexes were also labeled. Immunoreactive axon terminals were numerous in the globus pallidus and substantia nigra, where they exhibited a dense pattern of distribution characteristic of neostriatal spiny projection neurons. Gi alpha immunoreactivity was distributed to multiple subcellular compartments. In neostriatal somata and dendrites, labeling was present intermittently along plasma membranes, and on rough and smooth endoplasmic reticulum and microtubules. In axon terminals, reaction product appeared on plasma membranes and heavily labeled the membranes of synaptic vesicles. The presence of Gi alpha in axon terminals was confirmed in purified synaptosome preparations. G-proteins consistent with the masses of Go alpha and Gi alpha, respectively, were ADP-ribosylated in the presence of pertussis toxin in striatal synaptosomes. Western blot analysis in purified synaptosome preparations of the neostriatum, globus pallidus, and substantia nigra with the same antiserum used in the immunohistochemistry demonstrated a predominant 41 kDa protein corresponding to the molecular mass of Gi alpha. Immunohistochemical localization of Gi alpha with the immunogold method in a crude striatal synaptosome preparation showed gold particles associated with synaptic vesicles and plasma membranes. Results provide the first direct evidence that Gi alpha is localized to medium-sized neostriatal projection neurons and interneurons, where it is likely to function in membrane-bound signal transduction at the postsynaptic and presynaptic level. The presence of Gi alpha in synaptic vesicle membranes points to another potentially important role for this G-protein in vesicle trafficking, such as that recently shown for smaller-molecular-mass G-proteins

    Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction

    Get PDF
    Polyglutamine expansion in the N terminus of huntingtin (htt) causes selective neuronal dysfunction and cell death by unknown mechanisms. Truncated htt expressed in vitro produced htt immunoreactive cytoplasmic bodies (htt bodies). The fibrillar core of the mutant htt body resisted protease treatment and contained cathepsin D, ubiquitin, and heat shock protein (HSP) 40. The shell of the htt body was composed of globules 14-34 nm in diameter and was protease sensitive. HSP70, proteasome, dynamin, and the htt binding partners htt interacting protein 1 (HIP1), SH3-containing Grb2-like protein (SH3GL3), and 14.7K-interacting protein were reduced in their normal location and redistributed to the shell. Removal of a series of prolines adjacent to the polyglutamine region in htt blocked formation of the shell of the htt body and redistribution of dynamin, HIP1, SH3GL3, and proteasome to it. Internalization of transferrin was impaired in cells that formed htt bodies. In cortical neurons of Huntington's disease patients with early stage pathology, dynamin immunoreactivity accumulated in cytoplasmic bodies. Results suggest that accumulation of a nonfibrillar form of mutant htt in the cytoplasm contributes to neuronal dysfunction by sequestering proteins involved in vesicle trafficking

    Mutant Huntingtin Fragments Form Oligomers in a Polyglutamine Length-Dependent Manner \u3cem\u3ein Vitro\u3c/em\u3e and \u3cem\u3ein Vivo\u3c/em\u3e

    Get PDF
    Huntington disease (HD) is caused by an expansion of more than 35–40 polyglutamine (polyQ) repeats in the huntingtin (htt) protein, resulting in accumulation of inclusion bodies containing fibrillar deposits of mutant htt fragments. Intriguingly, polyQ length is directly proportional to the propensity for htt to form fibrils and the severity of HD and is inversely correlated with age of onset. Although the structural basis for htt toxicity is unclear, the formation, abundance, and/or persistence of toxic conformers mediating neuronal dysfunction and degeneration in HD must also depend on polyQ length. Here we used atomic force microscopy to demonstrate mutant htt fragments and synthetic polyQ peptides form oligomers in a polyQ length-dependent manner. By time-lapse atomic force microscopy, oligomers form before fibrils, are transient in nature, and are occasionally direct precursors to fibrils. However, the vast majority of fibrils appear to form by monomer addition coinciding with the disappearance of oligomers. Thus, oligomers must undergo a major structural transition preceding fibril formation. In an immortalized striatal cell line and in brain homogenates from a mouse model of HD, a mutant htt fragment formed oligomers in a polyQ length-dependent manner that were similar in size to those formed in vitro, although these structures accumulated over time in vivo. Finally, using immunoelectron microscopy, we detected oligomeric-like structures in human HD brains. These results demonstrate that oligomer formation by a mutant htt fragment is strongly polyQ length-dependent in vitro and in vivo, consistent with a causative role for these structures, or subsets of these structures, in HD pathogenesis

    Pressure Injuries in Nursing Homes: Investigating Racial/Ethnic Differences Using National Data

    Get PDF
    Context: In the United States, Black nursing home (NH) residents have higher rates of pressure injury (PI) than White residents. Although some studies ascribe this to a relatively high proportion of Black residents in NHs with poor outcomes and limited resources, the factors that associate with PIs and their consequences across and within NHs remain poorly understood. Also, little is known about PIs among residents of differing races and ethnicities. Objectives: Using four national datasets from 2016–2017, we evaluated U.S. NHs to characterize differences in PI-related outcomes among non-Hispanic Whites, non-Hispanic Blacks, Hispanics, Asians, American Indian or Alaska Natives, and Native Hawaiian or Other Pacific Islanders, and clarified the impact of resident-, facility-, and community-level characteristics on these outcomes. Methods: We calculated the annual incidence rate of PIs, the probability of PI healing, and the prevalence of PI-associated pain and analgesic prescription. We determined the bivariate associations between each of these outcomes and race/ethnicity, and between each outcome and multiple potential covariates. Multivariable analyses then evaluated the associations between each outcome and race/ethnicity while adjusting for covariates. Findings: In the bivariate analyses, the annual incidence rate of stage 2, 3, 4, and unstageable PIs for Whites was lower than Blacks and Hispanics, similar to American Indians or Alaska Natives, and higher than Asians and Native Hawaiians or Other Pacific Islanders. In the multivariable analyses, the PI incidence rate ratio was higher only among American Indians or Alaska Natives, and this difference was associated with a NH-level variable—the proportion of racial and ethnic minority residents. Other outcomes did not vary by race/ethnicity. An adjusted exploratory analysis was conducted to help explain the difference between the bivariate and multivariable analyses and revealed an important within-NH difference: Compared to Whites, the PI incidence rate ratios were higher in women who were Black, or American Indian or Alaska Native. Limitations: Our findings are correlational and may be impacted by unevaluated variables and the limitations of administrative data. Implications: In U.S. NHs, the annual incidence rate of PIs varies by race/ethnicity. Facility characteristics strongly influence this variation. Higher incidence rate ratios among racial and ethnic minority residents also are explained by differences within NHs and are striking among subgroups, including female residents who are Black, or American Indian or Alaska Native. Future research should evaluate the sexes separately and explore both across-NH and within-NH differences to determine whether there are structural inequities, bias, and disparate care

    Huntingtin associates with the actin cytoskeleton and alpha-actinin isoforms to influence stimulus dependent morphology changes

    Get PDF
    One response of cells to growth factor stimulus involves changes in morphology driven by the actin cytoskeleton and actin associated proteins which regulate functions such as cell adhesion, motility and in neurons, synaptic plasticity. Previous studies suggest that Huntingtin may be involved in regulating morphology however, there has been limited evidence linking endogenous Huntingtin localization or function with cytoplasmic actin in cells. We found that depletion of Huntingtin in human fibroblasts reduced adhesion and altered morphology and these phenotypes were made worse with growth factor stimulation, whereas the presence of the Huntington\u27s Disease mutation inhibited growth factor induced changes in morphology and increased numbers of vinculin-positive focal adhesions. Huntingtin immunoreactivity localized to actin stress fibers, vinculin-positive adhesion contacts and membrane ruffles in fibroblasts. Interactome data from others has shown that Huntingtin can associate with alpha-actinin isoforms which bind actin filaments. Mapping studies using a cDNA encoding alpha-actinin-2 showed that it interacts within Huntingtin aa 399-969. Double-label immunofluorescence showed Huntingtin and alpha-actinin-1 co-localized to stress fibers, membrane ruffles and lamellar protrusions in fibroblasts. Proximity ligation assays confirmed a close molecular interaction between Huntingtin and alpha-actinin-1 in human fibroblasts and neurons. Huntingtin silencing with siRNA in fibroblasts blocked the recruitment of alpha-actinin-1 to membrane foci. These studies support the idea that Huntingtin is involved in regulating adhesion and actin dependent functions including those involving alpha-actinin

    The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD.</p> <p>Results</p> <p>Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels.</p> <p>Conclusions</p> <p>Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.</p
    • …
    corecore