1,128 research outputs found

    Mechanisms of boron fiber strengthening by thermal treatment

    Get PDF
    The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method

    Anelastic deformation of boron fibers

    Get PDF
    The flexural deformation behavior of vapor-deposited boron fibers was examined from 100 to 1100 K by stress-relaxation and internal friction techniques. Only strong thermally-activated anelasticity was observed with no evidence of plasticity up to surface strains of 0.006. The parameters governing the relaxation processes within the anelastic spectra of as-received and annealed fibers were determined. These parameters were correlated with X-ray structure studies to develop preliminary models for the sources of boron's anelasticity. The large relaxation strengths of the dominant Ia processes coupled with their relaxation times and energies suggest a sliding mechanism between certain basic structural subunits common to both the beta-rhombohedral and vapor-deposited boron structures

    Operational experiences of a commercial helicopter flown in a large metropolitan area

    Get PDF
    A survey of commercial helicopter-operating experiences was conducted using a helicopter flight recorder in order to provide a basis for extending helicopter design and service-life criteria. These data are representative of 182 flight hours accumulated during 1414 flights comprised of the separate legs of the total route structure employed. The operating experiences are presented in terms of the time spent within different airspeed brackets, within the classifiable flight conditions of climb, en route, and descent, at various rates of climb and descent, and at different rotor rotational speeds. The results indicated that the helicopter spent a majority of the flight time at airspeeds either below 40 knots or above 100 knots. Rates of climb and descent were concentrated at values below 5.1 m/s (1000 ft/min) particularly for higher airspeeds. Normal acceleration experiences were low, both in the total number and peak value realized; however, an extremely large number of pitch angular-velocity experiences were noted. Rotor rotational speeds were normal with no occurrences above the upper red-line limit

    Strength advantages of chemically polished boron fibers before and after reaction with aluminum

    Get PDF
    In order to determine their strength potential, the fracture properties of different types of commercial boron fibers were measured before and after application of secondary strengthening treatments. The principal treatments employed were a slight chemical polish, which removed low strength surface flaws, and a heat treatment in oxygen, which contracted the fibers and thereby compressed intrinsic bulk flaws. Those fiber types most significantly strengthened were 200 to 400 micrometers (8 to 16 mil) diameter boron on tungsten fibers produced in a single chemical vapor deposition reactor. The slight polish increased average tensile strenghts from 3.4 to 4.4 CN/m2 (500 to 640 ksi) and reduced coefficients of variation from about 15 to 3 percent. The oxygen heat treatment plus slight polish further improved average strengths to 5.5 GN/m2 (800 ksi) with coefficients near 3 percent. To ascertain whether these excellent properties could be retained after fabrication of B/Al composites, as produced and polished 203 micrometers (8 mil) fibers were thinly coated with aluminum, heat treated at B/Al fabrication temperatures, and then tested in tension and flexure at room temperature. The pre-polished fibers were observed to retain their superior strengths to higher temperatures than the as-produced fibers even though both were subjected to the same detrimental reaction with aluminum

    High temperature dynamic modulus and damping of aluminum and titanium matrix composites

    Get PDF
    Dynamic modulus and damping capacity property data were measured from 20 to over 500 C for unidirectional B/Al (1100), B/Al (6061), B/SiC/Al (6061), Al2O3/Al, SiC/Ti-6Al-4V, and SiC/Ti composites. The measurements were made under vacuum by the forced vibration of composite bars at free-free flexural resonance near 2000 Hz and at amplitudes below 0.000001. Whereas little variation was observed in the dynamic moduli of specimens with approximately the same fiber content (50 percent), the damping of B/Al composites was found at all temperatures to be significantly greater than the damping of the Al2O3/Al and SiC/Ti composites. For those few situations where slight deviations from theory were observed, the dynamic data were examined for information concerning microstructural changes induced by composite fabrication and thermal treatment. The 270 C damping peak observed in B/Al (6061) composites after heat treatment above 460 C appears to be the result of a change in the 6061 aluminum alloy microstructure induced by interaction with the boron fibers. The growth characteristics of the damping peak suggest its possible value for monitoring fiber strength degration caused by excess thermal treatment during B/Al (6061) fabrication and use
    corecore