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ABSTRACT_

A flexural vibration test and associated equipment have been devel-

oped to accurately measure the low strain dynamic modulus and damping of

composite materials from -200° C to over 500° C. The basic test method

involves the forced vibration of composite bars at their resonant free-

free flexural modes in a high vacuum cryostat-furnace. The complex

modulus approach was employed to derive theoretical expressions for com-

posite axial and transverse dynamic properties in terms of the dynamic

ITproperties of the constituent phases. The accuracy of these expressions
ON

w	 and the flexural test was verified by dynamic moduli and damping capacity

measurements ot. 50 fiber volume percent boron/aluminum (B/A1) composites

vibrating near 2000 Hz. Whereas the properties of the highly anelastic

fiber were measured on single fibers, the aluminum matrix properties

were in most part deduced from the B/Al results. The phase results were

summarized to permit predictions of the B/A1 dynamic behavior as a func-

tion of frequency, temperature, and fiber volume fraction. Analysis of

tiie test data has also indicated several areas in which B/Al dynamic

properties might be exploited to evaluate and predict gross composite

behavior as a function of environmental conditions encountered in fabri-
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cation and use. These areas include fiber-matrix debonding, fiber inter-

action with matrix and impurities, and thermal treatment effects on the

matrix.

KEY WORDS: composite materials, flexural vibration test, dynamic modulus,

damping, boron/aluminum composite, boron fiber, aluminum alloy matrix,

1	 thermal treatment

INTRODUCTION

The primary objective of this research was to develop a relatively

simple test for accurately measuring the low strain dynamic properties

of composite materials as a function of frequency (time) and temperature.

Clearly the results of such a test can be of significant value in the

design of structures subject to vibration. Upon achievement of this

first goal, the next objective was to utilize the test data to verify

the predictive accuracy of theoretical expressions for the composite

dynamic properties. If these expressions which are based on the dynamic

properties of the constituent phases could be verified for a large varia-

tion in a parameter such as temperature, composite dynamic response could

then be predicted for conditions not included in the test. A third objec-

tive was to explore whether the test data could be used to yield basic

information concerning environmental effects on the microstructure, macro-

structure, and other physical properties of the composite and its constit-

uent phases. If this information could be correlated with variations in

macroscopic composite properties, the dynamic properties could then become

a practical tool for evaluating and predicting composite mechanical be-

i havior as a function of environmental conditions.
I

f
ORIGINAL PAGE IS

`	
OF POOR QUALITY

I
1
1.



3

i I	 To achieve the above objectives, the low strain dynamic modulus and

damping capacity of boron/aluminum (B/A1) composites were measured from

-200° C to 400° C. The reasons for this choice of composite were many.

First, B/A1 is a metal matrix composite of current aerospace interest

for which dynamic data would be useful for design purposes. Second,

fabrication techniques for B/Al were fairly well established, thereby

enhancing the probability of obtaining consistent microstructural and

macrostructural properties. Third, from our previous work there existed

accurate data concerning the low strain dynamic behavior of the modern

boron fiber (1,2,3). Fourth, in contrast to the essentially elastic

behavior of other reinforcement fibers, the boron fiber displays a large

amount of anelasticity which is not only reproducible but also predict-

able in time and temperature. Fifth, much data were available in ;.he

literature concerning the time-temperature dependent dynamic properties

of aluminum alloys. Finally, the possibility may exist that dynamic data

could be employed to detect the growth of detrimental boron-aluminum

interaction phases created by heat treating the composite above 5(0° C.

PROCEDURE

Apparatus

A simple flexural test was developed for measurf ,ig the low strain

dyajxiic modulus and damping capacity of composite materials from -200° C

to over 500° C. The basic test teclinique consisted of the forced flex-

ural vibration of composite bars at their two lowest free-free synunetrical

resonant modes in a high vacuum cryostat-furnace. 'rhe free-free config-

uration avoided the spurious clamp effects often encountered when massive 	 ri

1.
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s^ , :.i.;ns are vibrated in the fixed-free cantilevered mode (4,5). As

shown schematically in Fig. 1, support for the composite specimen was

accomplished by two sets of adjustable stainless steel screw pins located

at two vibrational nodes. Whereas the two pins of the upper set were

threaded through a rigid support, the two pins of the lower set were

threaded through a circular ring which itself was not fixed but only slip

fitted into a hole in the lower rigid support. This was done in order to

simplify specimen mounting and to minimize stresses caused by rotation and

expansion of the composite during thermal cycling.

Before the mounting of each specimen, slight indentations for pin

support were made at the theoretical nodal positions on the specimen side

faces. For this the composite was assumed to be a rectangular parallel-

opiped symmetric across its thickness and to have a length to thickness

ratio large enough to neglect transverse shear effects during vibration (6).

As such, the first tone nodes are le:nt^d at h/2 across the specimen

thickness h and at 0.2248 and 0.776Q along the specimen length R (7).

Although four nodes exist for the Third tone, for this work the nodal

positions at 4/2 and 0.09411 and 0.644k were chosen so that the pin set

separation was almost the same as that of the first tone. This permitted

rapid specimen mounting for either tone without any movement of the two

main rigid supports and only slight vertical translation of the circular

rind support.

Vibration drive and detection was achieved electrostatically by two

electrodes positioned at convenient vibrational antinodes. As shown in

'	 Fig. 1 tiLese electrodes were simply stainless steel bolts with heads

Ii



machined flat to allow adjustment close to the composite surface. Typi-

cal gap separations ranged between 100 and 200 um. Electrical insulation

between the electrodes and the stainless steel main frame was provided by

sappnire washers. These washers could be adjusted vertically within a

slot in the main frame, thereby allowing electrode positioning at speci-

men antinodes.

A block diagram of the electrical drive and detection system is

shown in Fig. 2. The specimen electrostatic drive force F cos wt was

produced by an alternating voltage V ac cos(ut from the audio amplifier

superimposed on a do voltage V 1 provided by the variable high voltage

supply. Because the drive electrode and specimen formed a parallel plate

capacitor, the force amplitude was

F	 ^Ap V1Vac /(g 1 ) 2	(1)

Here	 8.9x10-12 newtons/volt 2 , A
P 

is the area of the capacitor

plates, and 
g 	

is the gap separation between the drive electrode and

specimen.

For detection, a high impedance operational amplifier was employed

as a charge amplifier to measure any change G g 2 cos Wt in the gap

separation g 2 between the detector electrode and the specimen. By

application of a do voltage V 2 (=300 volts) to the detector electrode, 	 j

specimen displacement was converted to an alternating voltage S cos wt.

Under optimum gain conditions the amplitude of the output signal from

the operational amplifier was

'	 G g
S = g 2 V 2	 (2)

2

Y AGE 1S
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A lock-in amplifier was used to further amplify this signal and to elim-

inate extraneous off-frequency noise. It is estimated that this detection 	

,.
system can sense specimen displacements as low as one nanometer.

For dynamic measurements as a function of temperature, the stainless

i	 steel main frame (Fig. 1) was hung vertically by thin wires in a long

cylindrical vacuum chamber. The wires (5 mil tantalum) isolated the main

frame both thermally and vibrationally. To further reduce external

noise, vacuum conditions were maintained by an ion pump at pressures

below 10-7 torr. A metallic shield was placed between the electrode and

around the main frame in order to reduce pickup of the drive signal at the

detection electrode and to minimize thermal gradients during temperature

cycling. For temperature measurement thin gage chromel-alumel thermo-

couple wires were attached to the main frame. To achieve temperatures

above 22° C, the vacuum chamber was inserted in the 7.6 cm bore of a

resistance-heated furnace. Warmup and cooldown rates were kept low

('L2° C/min) in order to minimize thermal gradients. For measurements

between -200 and 22° C, the vacuum chamber was filled with dry nitrogen

gas and tnen inserted into a liquid nitrogen bath. When temperatures

near -200° C were reached, the nitrogen gas was pumped out and the nitro-

gen bath removed, allowing the main frame to warmup slowly to 22° C

('^,6 hours) .

Dynamic Measurements

Fur determination of the flexural dynamic modulus E 	 as a function

of temperature T, the forced resonance method was employed in which the

variable drive oscillator was manually tuned to that frequency which

II
I
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produced maximum vibrational displacement. For the free - free flexural

modes of bar specimens witk low

quencies wn (T) are related to

a) =

n

where m, h, w, and R are the

damping, these resonant (angular) fre-

Eb by

3

b 	 m CR/	
Eb	

(3)

specimen mass, thickness, width, and

length, respectively ( 7). The frequency constant b 	 depends on the

tone number n and also on specimen dimensions if R/h < 100 (rotary

inertia and shear deformation effects). Simplified formulas to calculate

accurate b 	 and b 3 values for Z / h < 100 have been derived in Appen-

dix I using Huang ' s transcendental equation for free - free boundary con-

ditions (6). From Eq. 3 it is seen that frequency can be varied by

charging tones or specimen dimensions.

b
Besides being temperature dependent, E 	 was also frequency dependent

due to the existence of time -dependent anelastic mechanisms within the

specimen. During vibration the anelastic strains from these mechanisms

gave rise to a total strain amplitude E which lagged the stress ampli-

tude o by a phase angle ^(W,T). Thus specimen anelasticity produced

both hysteretic or damping effects and a dynamic modulus less than the

elastic flexural modulus E b (w = m). In this w( , k specimen damping was

d!termined from oscilloscope photograptis of the free decay obtained after

simultaneously removing the resonant drive signal and grounding the drive

electrode. Because all data were taken at low strain amplitudes wiiere the

decay tima constants were amplitude independent ( linear anelasticity),

it followed that proper expressions for the specimen damping capacity ^

were

ORIGINAL PAGE IS
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2n tan ^ '	
u(t 

2 - 
t 

1 )
	

(4)

Here OW/W is the relative amount of stored energy lost per cycle, and

S 1 and S 2 are the detector envelope signals at times t 	 and t2,

respectively. The more rapid free decay method was chosen over other

damping measurement methods (7) t ,ecause it was the least affected by

detection problems caused by therr.ally- I nduced changes in the electrode

gap separations and in the specimen dampin .; (0 < 0.1).

An alternate approach often used to express anelasticity effects on

mecnanical vibration is the concept of complex modulus E* defined by

W-

where

aei (UX+0 = E*eeiA 	(;)

E* - ER + iE I	(6)

The real part ER and the imaginary part E 	 of E* are referred to

as the storage and loss modulus, respectively. It can be shown (7) that

ER is equivalent to the dynamic modulus E 	 as measured from the

resonant frequency w
n 

and that

E  = ER tan 0 = E  ^/2n
	

(7)

It should be pointed out that for forced reso.ance, the frequency w

at maximum displacement is less than ur n by a factor [1 - (tan 0)2/211/2.

For this study 0 was less than 0.02 so that this frequency correction

cuuld be neglected in the E 	 calculations.

I^
. 

I
I^.

Composite Theory

For the unidirectional composite with fibers aligned within the

plane of flexural vibration (axial mode), tiie flexural dynamic modulus

r ^^

_	 --	 ;.
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E 	 is in general less than E 11 , the tensile modulus for uniaxial ex-

tension parallel to the fiber direction. This difference is due primarily

to a higher than average matrix volume fraction near the specimen bend

surfaces. Appendix II analyzes this effect and shows that as the ply

number N increases, the composite E 	 rapidly approaches E 11 . Like-

wise, for a unidirectional composite with fibers aligned perpendicular

to the flexural vibration (transverse mode), a similar type of analysis

(8) indicates that for large N the flexural E 	 becomes essentially

equal to E72 , the tensile modulus for uniaxial extension perpendicular

to the fiber direction. Regarding the 8-ply B/A1 composites of this

nt ,.dy, the above results suggest that specimen flexural moduli were indeed

less tnan the tensile moduli but by less tlian 0.6 percent. Because of

tti.s small difference, it was generally assumed for the purpose of data

analysis that E 	 measurements for the axial and transverse modes were

in fact dynamic measurements of E 11 and E 22 , respectively.

To predict composite dynamic behavior in terms of fiber and matrix

anelasticity, one can employ the complex modulus concept in the manner

described by Hashin (9). In this approach the effective complex moduli

of an anelastic (or viscoelastic) composite can be determined directly

from the equations for composite effective elastic moduli by simply re-

placing the elastic moduli of the phases by their complex moduli. For

instance, for unidirectional composites extended in the axial mode, the

rule-of-mixtures (ROM) can be employed to predict the elastic modulus

E1 1 . If anelastic effects are present, it follows that the composite

complex modulus 
E11 

is given by

i

._^T ^ ^ fT^-1'"11'` t ' ^ i I

I

li

I	 i
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E11 . v
fEf + vmEm*	 (8)

where v is volume fraction, E* is complex Young's modulus in the

fiber direction, and the subscripts f and m refer to the fiber and

matrix phase, respectively. The real parts of Eq. (8) yield the axial

dynamic modulus

	

E11 , v 
f 

E f + vmEm ;
	

(9)

whereas the imaginary parts yield the axial damping capacity

(Ef)	 Em

x,11MofEll^f + V  Ell ^m	 (10)

For unidirectional composites extended in the transverse mode, the

theoretical expression for the elastic modulus E 22 is quite complicated

(9). For this reason we have employed the approximate Halpin-Tsai (HT)

equation which has been found to predict E 22 values in good agreement

with the E22 derived from formal elasticity theory (10). Thus the

complex modulus for the transverse mode can be expressed as

(1 + {n*vf)

E 22	 Em (1 - >) *v f )	 (11)

where

	

q	 (Ef - Em) / (Ef +	 ^Em)	 (12)

The ^ parameter is a measure of reinforcei.,ent which depends on the

boundary conditions (10). Under the assumption of low damping and de-

formation isotropy for the two phases, it follows that the transverse

dynamic modulus should be predictable from

E22 - Em[H/JJ

I

(13)

ORIGINAL PAGE IS

OF POOR QUALITY



d^

I

i
i	

J

I^
I

11

Likewise for the transverse damping capacity, one should expect

x'22 = ( Y 22 ) ^f + (1 - 
Y 22 )ym	 (16)

where

Y22 = 'f (l+ 0 2E f Em/Hi	 (17)

Clearly the composite expressions for modulus and damping capacity

are the baseline behavior to be expected from the fiber and matrix

intrinsic properties. There could exist, however, other sources of

anelasticity that are specific to composite structure, such as the

fiber-matrix interface and fiber-matrix interaction phases. These addi-

tional mechanisms will reduce the composite dynamic modulus and increase

damping in certain frequency and temperature ranges. It is tnerefore

necessary to take extra cafe when comparing dynamic data with predictive

theory because slight differences could be of practical significance

for evaluating composite structure.

.,

where	
i
i

H	 (1 + ;v f )E f + (;vm )E
m
	(14)

and

i
J = vmEf + ({ + v f)i? 	 (15)

Specimens

The B/A1 specimens for this

directional panels containing not

fibers were 203 um (8 mil) boron

by Avco; the matrix material was

The diffu.;ion bonded panels were

research were ootained from 8-ply uni-

ninally 50 volume percent fiber. The

on tungsten fibers commercially supplied

either 1100 or 6061 aluminum alloy.

fabricated by two manufacturers, hereafter I
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referred to as M1 and M2. Exact conditions during bonding were not avail-

able. Dynamic test specimens were diamond cut from the panels into nearly

exact rectangular parallelpipeds with nominal dimensions of 2 X 11,102 mm.

Four M1 axial mode specimens were supplied directly by the manufacturer;

whereas one axial and one transverse mode specimen were cut in-house from

the same M2 panel (6061 matrix). Tensile strength data for coupons ob-

tained from the M1 and M2 panels have been reported elsewhere (11,12).

RESULTS

For this particular s,udy of B/A1 d^ ,namic properties, temperature was

the principal variable • ;ith frequency, strain amplitude, and fiber volume
i
1

t	 fraction held essentially constant. The frequency which was determined by
r	 -i
i	 *he lowest free-free flexural resonant condition varied between 1700 and

Hz for the axial specimens and was about 1400 Hz for the transverse

specimen. Strain amplitudes at the specimen bend surfaces were kept

below 10 -6 . For this strain range the composite dynamic modulus and damp-

ing capacity were independent of vibrational amplitude (linear anelasticity).

Dynamic Moduli at 22° C

Tile room temper.:L­ property results for the axial and transverse

B/Ai specimens are listen i.: Table 1. Measurements of specimen mass,

dimensions, and resonant frequency were employed to determine average fiber

volume fraction v f , average matrix density pm , and the dynamic tensile

modulus E11 or E 22 . The o f were calculated from

o f = N  nd z Awh
	

(18)

,3here the fiber number N 	 was determined optically and the fiber

1

11
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diameter d was assumed to be 202.5±0.7 pm (3). The p m valueE were

calculated from

Pm = ( P c - P fv f )/vm 	(19)

i

where pc is the measured composite density and p 	 is the 203 wm boron

j	 fiber density measured to be 2.410 g/cm 3 (3). Because absolute values

of Ell and E22 were required for data analysis, a small correction of

+0.6 percent was applied to the flexural moduli E 	 calculated from

Eq. (3) (see Appendix II).

To verify the accuracy of the theoretical composite relations, the

dynamic modulus to be expected for each specimen was calculated using the

ROM Equation (9) for E 11 and the HT Equation (13) for E 22 . For the E
11

i

calculation a very small correction (+1 GPa) was included to accoun^ for

jthe Poisson's ratio difference between fiber and matrix (9). For the E22

calculation it was assumed that 4 = 2 because of the nearly square array

of fibers in the B/Al specimens (10). The phase properties and their

literature sources are listed in Table 2. It should be pointed out that

the Table 2 value for E
m 

is probably an overestimate because it neglects

the unknown degradation effects of matrix anelasticity and matrix porosity

(2 to 3 %). The theoretical moduli using the above parameters and the

measured of are given in the last column of Table 1.

Examination of the Table 1 data indicates that the axial moduli E11

for the Ml specimens were not only very consistent and independent cf

matrix alloy but also in very good agreement with the ROM predictions.

This finding supports the accuracy of both the flexural test and the ROM

equation for dynamic axial moduli. On the other hand, the specimens

ORIGINAL PAGE IS
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taken from the same M2 composite panel displayed E 11 and E?? moduli

measurably lower than the theoretical predictions. These results suggest

that a physical condition necessary for application of the predictive

relations existed in the M1 panels but was somehow lacking ill the M2

panel. This problem became even more severe during thermal cycling.

For example, the M2 E 11 dropped by 5 percent after only one cycle be-

tween 22 and 450° C; whereas the 
E11 

of a M1 6061 specimen decreased

less tlian 1 percent after six cycles. Additional evidence for the M2

composite problem can be found in the fact that average 22° C ultimate

tensile strength for coupons from the as-fabricated M1 and M2 panels

were l.b GPa and 1.1 GPa, respectively (11,12).

At the present time it is not clear what the exact physical sources

were f,! the degraded behavior of the P12 composite panel used in this

study. Optical observations dial not reveal any external problems nor any

dissimilarities between the Ml and M2 specimens. differences in matrix

moduli may have existed due to, for example, differences in porosity.

However, the similar density results of Table 1 do not support this

interpretation. It appears then, by a process of elimination, that Lite

problems of this particular M2 panel were somehow associated with incom-

plete fiber-matrix bonding. Although there was no direct experimental

evidence fot this conclusion, the absence of complete stress-strain

transfer between fiber and matrix souk certainly explain the observa-

Lion of moduli and strength data lower than those of the "well-bonded"

M1 specimens. Likewise, expansion stresses developed during thermal

cvcling might be expected to increase debonding if the original bonds

ORIGINAL P U 1S
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were weak. Along these lines, it should be pointed out that the trans-

verse M2 specimen showed less than 1 percent change in E 22 after two

cycles above 450° C. This absence of thermal cycling effects may pos-

sibly be explained by E 22 being fairly insensitive to fiber-matrix

bonding and/or by smaller thermal expansion stresses because the trans-

verse fiber let.gths were a factor of 10 shorter than the axial fiber

lengths.

Dynamic Moduli vs. Temperature

To express the temperature dependence of the dynamic moduli, it is

convenient to employ the concept of relative modulus R  defined as

Ex (T)/EX where EX = Ex (22 0 Q. The property Rx (T) can be measured

quite accurately because it eliminates many of the dimensional errors

inherent in the absolute measurements of the room temperature modulus

EX. Thus, R11 for the axial mode can be determired from Eq. (3); i.e.,

R	 - E 11 (T) - 	)	 2 (1 + a ll AT)3

11	 E 	 0 	
(1 + a	 AT)4	

(20)

11	 22

where AT = T - 22° C and a ll and a22 are the average coefficients

for composite axial and transverse thermal expansion, respectively.

Likewise from Eq. (3) the transverse mode R22 is given by

E 22 (T)	 w(T)	 2	 1	 (21)

R22	 E 	 ^-u(22° C)	 (1 + a ll AT)
22

From the B/A1 results of Kreider and Patarini (14), the expansion

coefficients for a 6061 matrix were taken as a ll = 5.5 X 10-6 /°C and

r

1 7771	 1	 11 -1

1
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a22 = 19 x 10 -6 /°C. As expected, the R11 data from the M1 axial com-

posites showed little variation among specimens. The average Ml. R11

results are shown in Fig. 3 together with the R22 data for the one M2

transverse specimen employed in this study. For clarity, data points

taken about every 10° C are not shown. As previously mentioned, despite

problems with the M2 R11 results, the M2 R22 data were reproducible

during thermal cycling.

To apply composite theory to the temperature dependent axial results,

one can write the ROM Eq. (9) in terms of R parameters, i.e.,

__ (v fRf )E f + (vmRm)Em

R11

	

	
(22)

v°E° + v°E° 
f f	 m m

Here the temperature dependent terms are in parenthesis and the super-

script o refers to the 22° C values. From Eq. (18),

	

v f (T) = vf[ 1 - X(T )]	 (23)

where

X(T) = 2 OT(a
22
 - a11 )	 (24)

Thus, even if the fiber and matrix moduli have no temperature dependence,

(i.e., Rf = Rm = 1), the composite R 11 will vary because of a changing

fiber volume fraction. From the average room temperature results for

the M1 specimens, Eq. (22) becomes

R11 = 0.864R f (1 - X) + 0,136Rm 0 + X)	 (25)

The R 	 data measured for boron fibers vibrating near 2000 Hz are shown

_ ffl1

I	 '

in Fig. 4. Regarding R
m 

data for the 6061 matrix it was decided that

i	 I!
	

since the accuracy of the ROM theory had been proven at 22' C, it could

1`_u
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be employed at other temperatures to accurately determine R 	 for the

actual matrix material. The R 	 results determined from Eq. (25), the

R11 data of Fig. 3, and the R 	 data of Fig. 4 are shown by the open

circles of Fig. 4.

Examination of Eq. (25) indicates that the R 	 contribution to the

axial R11 is small in comparison to the R 	 contribution. The R 

calculations from this equation are thus very sensitive to errors in fiber

volume fraction. This is not the case, however, for Rm 
determinations

from transverse R22 data in which matrix effects predominate. This can

be shown by inserting the experimental R 22 and R 	 data into the HT

Eq. (13) with ^ = 2. The calculated R 	 for the M2 6061 matrix are

given in Fig. 4 for the fiber volume fraction range 40 % < o f < 47 %.

The upper limit is the observed o f and the lower limit is that of

value required in the HT equation to yield the low E22 measurement.

Thus, although fiber volume fraction was allowed to vary 7 percentage

points, the calculated R
m 

varied only slightly. The agreement of

this transverse R
m	 m

curve and the axial R	 points suggests that the

dynamic moduli of the M2 and M1 6061 matrices show negligible difference

in their temperature dependence. This can be explained by the fact that

the Fig. 4 R
m 

results essentially represent the basic behavior of the

6061 elastic modulus with differences in anelastic effects being so

small as to be unobservable. Although these R 	 results might also

suggest the validity of the HT theory, the o f insensitivity of the

transverse R	 make this conclusion somewhat tentative.
m
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Axial Damping Capacity

The ROM Eq. (10) for axial damping capacity X11 indicates that for

the average M1 axial specimen, the relative phase contributions are the

same as those in the R11 Eq. (25). This being the case, it is important

first to understand the temperature dependence of the controlling fiber

damping and how it might be altered by environmental conditions within

the composite.

For the temperature range -200° to +200° C, fig. 5a gives typical

^f curves for a 203 um boron on tungsten fiber vibrating in flexure near

2000 Hz. Data points which were taken about every 10° C are not shown

because they fell within 5 percent of the continuous curves. The top

curve is for the as-received fiber, whereas the middle and bottom curves

were measured after 90 minute heat treatments at 400° C in vacuum and in

r^

air, respectively. The decrease in ^f with heat treatment is tentatively

explained by the reduction in fiber anelasticity due to the motion of

atomic defects. For the vacuum treatment the defects might be identified

as either intrinsic defects or surface impurities which migrate between

100 and 300° C. Apparently becr.use of the rapid quench after fiber for-

mation by chemical vapor deposition, these defects had not reached their

final lattice position within. the as-received fiber. Af.,!r the 400 ` C

vacuum treatment, the middle ^f curve remained stable for vacuum treat-

ments up to 1100° C. For the air treatment the defects were presumably

oxygen atoms which begin to react with boron near 400° C (15). in contrast

to the vacuum results, the lower 	 f curve might be expected to decrease

further as the temperature of the air treatment is increased above
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400' C, thereby allowing oxygen atoms to diffuse deeper into the fiber. 	 1i'

With this background, let us now examine the low temperature I'll

results shown in Fig. 5b for a typical M1 6061 axial specimen. The top

curve was measured for the as-fabricated condition and the bottom curve

after a 30 minute heat treatment at 400° C in vacuum. For all composite

heat treatments, the specimen remained supported in the flexural test

apparatus. After the 400' C treatment, the x, 11 curve below 150° C

remained stable even after a 30 minute vacuum treatment at 550° C. In

comparing the as-fabricated 
X11 

data with the	
f 

results, it must be

realized that because of composite fabrication conditions (about 30 min-

utes near 500' C) the appropriate 
^f 

curve would not be the as-received

curve. More likely, the ^f curve for the fibers within the as-fabricated

composite would be equal to or lower than the 
^f 

vacuum treatment curve

because impurity atoms such as oxygen existed near the fiber surfaces

during diffusion bonding of the matrix material. The dropoff with

vacuum treatment indicates that impurity effects on fiber behavior did

not saturate during composite fabrication. However, the observed satura-

tion after the 400' C treatment suggests that the Fig. 6b bottom curve

for 
'11 

represents the baseline behavior to be expected for 50 volume

percent B/A1 composites vibrating near 2000 Hz.

The above discussion clearly indicates that the fiber 
^f 

and

consequently the 
I'll 

are measurably dependent on environmental condi-

tions at the fiber surface during composite fabrication and use. Because

these conditions were unknown, it is difficult to verify the damping

capacity Eq. (10) in terms of phase properties. However, from Fig. 5 it

1

I	 ,
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should be obvious that the composite X 11 reproduces almost exactly the

relative structure observed in the single fiber ^C Thus if matrix

effects are present, ^m for the TRW 6061 matrix must be small (less than

0.5 %) and relatively structureless. This conclusion also implies that

other damping sources contained in the low temperature measurements are

negligible. These include both intrinsic sources such as those due to

composite structure, interaction phases, and thermoelastic effects (7)

and extrinsic sources such as those due to experimental problems in the

flexural test and detection system. In addition, the close agreement

between ; 11 and ^f supports the inherent assumption that boron fiber

damping is the same fo •. flexural and axial vibrations (within the com-

posite).

Regarding dampi+ig capacity at high temperature, the stable ^f

results of Fig. 6a were measured for a boron fiber after vacuum meat

treatment at 400° C. Above 200° C the fiber anelasticity increases sig-

nificantly reaching a peak value of 24 percent near 650° C and 2000 Hz.

This effect is clearly seen in Fig. 6b which presents X 11 for a typical

M1 6061 axial specimen. The solid and dashed curves represent data,

respectively, for the as-fabricated condition and for the condition after

vacuum heat treatment for 30 minutes at 550° C. The heat treatment con-

ditions were chosen, in order to insure enough reaction between the

aluminum matrix and the boron fiber to significantly degrade composite
na

tensile strength (16). The objective here was to determine whether the

=	 i

measuremen t_ could detect fiber degr.,tdation perhaps through detection

of the boron-aluminum interaction phase. Also included in Fig. 6b are
-1
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the 
X11 

results for the M2 6061 axial specimen in the as-fabricated

condition.

Examination of Figs. 6a and 6b shows that before heat treatment the

IP11 of the M1 specimen was primarily controlled by the ^f expected

for the fibers. In contrast to Fig. 5a, small decreases in ^f due to

impurities are not discernable at high temperature. After the 550 ` C

heat treatment, however, a new damping peak near 270 ° C is observed in

the M1 data. From the M2 data it can be seen that this peak already

existed in the as-fabricated M2 panel. At first glance these results

might suggest that the damping structure is somehow associated with the

thermally induced boron -aluminum interaction phase which is known to be

detrimental to composite strength. Such a model could then explain the

weakness of the M2 panel as being due to a fiber-matrix interaction

caused by overprocessing during fabrication. However, although the ver-

dict on this tempting model is not yet final, it would appear from the

following transverse mode results that the heat treatment peak is specific

to the matrix and not to any new please created within the composite.

Transverse Damping Capacity

'file X22 cramping capacity curve presented in Fig. 7a was measured

for the M2 transverse specimen in the as-fabricated condition. Comparing

this curve with the X 11 results of Figs. 5b and 6b, one finds at any

given temperature only small quantitative differences in the structureless
4

baCKground damping. The only significant dissimilarity concerns the peak

Y

structure near 270 ` C which is measurably larger in the M2X 22 data

than in the M2 
X11 

data and does not appear at all in the as-iabricated

ml 
I'll 

data.
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Although analytical experimental studies to firmly e3tablish the

phase microstructure responsible for this peak have yet to be performed,

the application of composite theory to the damping results has shed some

light on the most likely phase to examine. From the data concerning the

270° C peak, one must conclude that high temperature treatment of a B/6061

Al composite somehow creates a new anelastic mechanism within the com-

posite structure. This mechanism may be located in the boron fiber, in

the aluminum alloy, or possibly in the new phase created by the boron-

aluminum interaction. For the specimens from the M2 panel, the damping

capacity Eqs. (10) and (16) together with the Table 1 moduli predict that

x'11 - 0.82 ^ f + 0.18 ^	 (26)

and

x'22 - 
0.31 ^ f + 0.69 ^m	 (27)

Clearly these relations eliminate the fiber phase from consideration be-

cause if a change 
L^f 

in the fiber damping had occurred near 270° C,

the peak height LO 
11 

would have been greater than the peak height L^22.

In addition, the interaction phase can be ruled out not only because of its

small volume fraction but also because if it is assumed to have a modulus

similar to that of the fiber, its damping contribution can be considered

part of LiD f . It appears then that peaks in 
X11 

and 
X22 

are best

explained by an increase in gym. Using Eq. (27) with the y 	 and x'22

data, one can calculate the solid curve shown in Fig. 7b for the 	 m

%A)damping capacity of the 6061 matrix in the 	 transverse specimen. for

i

comparison purposes, this figure also includes the 800 Hz data measured

ORIGINAI, PAGE IS
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by G. Rieu for a 6061 bulk specimen (17).

Examination of Fig. 7b shows that even if the heat treatment peak were

not present, the background damping of the 6061 aluminum alloy would like

that of the fiber increase significantly above 200° C. Using the dashed

line estimated from the bulk data, one finds a peak height A^ m = 5.3 per-

cent for the anelastic mechanism in the M2 panel. This result inserted

in Eq. (27) predicts that 611 = 1.1 percent, a value in good agreement

with the Fig. 6b peak heights for both the M2 and the heat-treated M1

axial specimens. Thus examination of the damping data in light of com-

posite theory suggests that the temperatures employed to fabricate the

M2 panel were high enough to produce within the 6061 microstructure an

anelastic process which displays at 'ti2000 Hz a damping peak near 270° C.

A search of the literature suggests that this peak may be similar to that

observed by Williams (18). Whether the peak's existence is an indication

of some form of B/A1 property degradation has yet to be determined.

DISCUSSION

The Flexural Test

The flexural vibration test has achieved the prime objective of this

research which was to develop a relatively simple test to accurately meas-

ure as a function of temperature the low strain dynamic response of com-

posite materials. Specimen preparation required prior to mounting was

minimal consisting of only minor mechanical work to assure parallel faces

an d to locate indentations for pin support. The use of pins to support

the specimen at intrinsic vibrational nodes eliminated the spurious fre-

quency and damping effects often encountered whenever a vibrational node 	 I I



i
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of a relatively massive specimen has to be maintained by external clamps.

From the close agreement of the B/A1 dynamic modulus and damping capacity

with composite theory, it is estimated that damping capacity contribution

of the pins was less than 0.01 percent. Allowing one set of pins to

translate and rotate in-situ not only assured that these pin effects re-

mained negligible during thermal cycling but also simplified specimen

mounting for the two lowest symmetrical free-free modes.

For this particular B/A1 study all dynamic measurements were made at

the first tone resonant frequency. One reason for this was that the fre-

quency dependent dynamic properties of the two constituent phases were

well documented. Thus, when composite theory was found applicable at one

frequency, composite dynamic properties could be predicted for all fre-

quencies (see next section). A second reason for employing the lowest

mode was that it minimized the effect of an experimental limitation on

the electrostatic drive force. Due to possible electrical breakdown of

components within the drive system, the upper limits for the do and ac

drive voltages were about 1000 and 500 volts, respectively. Assuming the

drive force to be concentrated at one point on the specimen, it can be shown

irom energy considerations that at forced resonance the displacement

amplitude of that point is given by

Lg i = u-ny/mw2W

It follows then from Eq. (1) that with g l = 100 um, Ap = 1 Cm 2 , and

m = 6 gm, maximum displacement based on upper limit voltages was

6gl	 200 
(m • sec -2)

W W

i
{

1

1	

i

7

(28)

(29)
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From this it can be seen that higher vibrational displacements and thus

better signal-to-noise ratios were available at the first tone frequencies.

For the B/.11 composites this became especially important at high tempera-

tures where both x,11 and 
W22 

reached significantly high values.

Regarding the measurement of dynamic properties as a function of

strain, the highest strain amplitude available in the flexural test was

again dictated by the electrostatic drive technique. For symmetric free-

free vibrations at tone n, the maximum strain amplitude at the surface

of the specimen midpoint is given by

Emax . Cnh Lg 1 /Z 2	(30)

where c l = 8.88, c 3 = 42.5, and og1 is free end vibrational amplitude.

Since the drive force was exerted at the free end, it follows from Eq. (29)

that the highest Emax available for the B/Al specimens at room tempera-

ture was about 4x10-4 . Thus the electrostatic drive was not strong enough

to achieve strains where plastic or new anelastic effects become apparent

(3). At these higher strains, the flexural test would not only require a

different force method but also a different method of measuring damping

since the free decay envelope would no longer be exponential in time.

Composite Dynamic Theory

Whenever possible, the measured axial and transverse dynamic proper-

ties of the B/A1 specimens were used to verify the predictive accuracy of

composite theory. The theoretical expressions given in Eqs. (9), (10),

(13), anJ (16) were developed by replacing the phase elastic moduli with

phase complex moduli in the rule-of-mixtures axial modulus and the

Halpin-Tsai transverse modulus equations. Of the three independent
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variables contained in these expressions, only temperature was allowed to

1	 change from -200 to over 400° C. The fiber volume fraction and the com-

posite vibrational frequency were kept essentially constant at 50 percent

and 2000 Hz, respectively. This approach to verify composite theory can

be contrasted with that of other experimental work in which only room tem-

perature elastic moduli were measured as fiber volume fraction was varied.

The major new element provided by this study was thus the inclusion of the

complex modulus concept and its verification through sensitive damping

measurements. The phase damping was provided not only by the aluminum

matrix but also by the highly anelastic boron fiber.

As pointed out in the presentation of the results, exact verifica-

tion of the dynamic relations for composite damping was difficult because

of slight variations in the phase properties due in the most part to dif-

ferent fabrication techniques of the two manufacturers. This was espe-

cially true for the anelastic properties of the aluminum matrices. To

eliminate this problem the ideal experiment would have been to measure

the damping of an axial and transverse specimen obtained from the same

composite panel. The agreement in the matrix c-)ntributions as derived from

two independent dynamic relations would then confirm the validity of both

relations. Unfortunately, because of bonding problems in the M2 panel

this approach could not be implemented in this particular B/A1 study.

Nevertheless, certain aspects of the dynamic moduli and damping data can

r 7,	 be employed to make some general conclusions concerning the predictive

accuracy of the composite theory.

(	 ORIGINAL PAGE IS
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For axial data the matrix contributions were relatively small in

comparison to that of the fiber so that slight deviations in matrix pro-

perties were essentially unobservable. Thus the ROM prediction for the

22° C dynamic axial modulus was found to give good agreement with the M1

experimental E11 for both 6061 and 1100 matrices. This result can be

contrasted with the poor agreement between ROM prediction and the measured

M2 E11 which must be interpreted as a deficiency in the M2 panel rather

than in the theory. Regarding damping data in support of ROM theory, the

axial results of Figs. 5 and 6 show good quantitative and very good quali-

tativu agreement between the fiber damping ^f and the M1 X 11 - Exact

verification is impossible here because manufacturing effects on ^f and

the matrix damping ^m were unknown.

To obtain an approximate idea of the dynamic behavior of the 6061

matrix, oue can examine the dynamic data for the M2 transverse specimen.

Admittedly the low E 11 and E22 data of Table I imply that the M2 panel

results should not be employed for absolute quantitative analysis. How-

ever, the reproducibility of the transverse eta coupled with the insensi-

tivity of the HT equation to fiber volume fraction s•.^..gest that relative

behavior of the 6061 matrix can be extracted. This is cor. .rmed in Fig. 4

where the Rm calculated from the ROM equation and the M1 R,.1

good agreement with the R
m 

calculated from the HT equation and the M2

R22 . Further confirmation can be found in the height of the heat treatment

damping peak of Fig. 7b. The observed reductions in height of this peak

4

i1 r
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The above results and discussion imply that the ROM and HT relations

can be employed to accurately predict axial and transverse dynamic pro-

perties provided exact phase dynamic properties are known. As has been
9

discussed, this last requirement was difficult to fulfill for B/A1 due 	 r

to slignt variations in phase properties. Nevertheless, by averaging

these variations one can obtain good approximations for the boron fiber

and aluminum matrix low strain dynamic modulus and damping capacity at

2000 Hz. These are given by the solid lines of Fig. 8. It should be

noted that the time-temperature kinetics of the anelastic mechanisms

responsible for the high temperature drop in modulus and rise in damping

have been carefully studied both for the fiber (1) and the aluminum

phase (7). With these kinetics it is possible to predict phase dynamic

properties at other frequencies. The predictions for 0.2 and 20 Hz are also

presented in Fig. 8. With this data, the ROM equation, and the HT equa-

tion, one can now obtain good estimates for the low strain axial and

transverse dynamic properties of B/Al composites as a function of fre-

quency (time), temperature, and fiber volume fraction. The effect of high

strain vibration on the fiber dynamic properties has been discussed

elsewhere (3).

Structure Evaluation

This preliminary study on the dynamic response of B/A1 composites

has revealed several areas where dynamic data of the flexural test could

be of practical aid in determining environmental effects on composite and

phase structures. For instance, dynamic modulus measurements have revealed

a low stiffness for the M2 panel which can be interpreted as a problem in
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possible the damping conttibution of each phase. Thus, for example, the
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fabrication conditions leading to poor fiber-matrix bonding. Beca-ise

this bonding problem appears to translate directly into a loss of com-

posite strength, the flexural test applied to low strength composites

could serve to distinguish bonding effects from other weakening effects

such as degraded fibers. The test also might aid in monitoring progres-

sive fiber-matrix debonding caused for example by mechanical or thermal

fatigue. Lt should be realized, However, that the modulus data are ab-

solute measurements requiring accurate data on specimen mass, dimensions,

and fiber volume fraction. Since bonding problems are indicated by non-

agreement between measured and theoretical moduli, slight errors in spe-

cimen physical parameters could make definite conclusions impossible (see

Table 1). For this reason the sensitivity of the modulus measurement is

greatly enhanced if the same specimen were examined before and after

subjection to an environmental test.

The damping capacity V, measurement is unlike the dynamic modulus

measurement Ln two important ways. First, being a relative measurement

It does not require an y preliminary data concerning specimen mass or

dimensions. Second, it is sensitive only to time-dependent deformation

mechanisms within the composite macrostructure and phase microstructure.

Thus if the damping of the constituent phases are known before composite

fabrication, the composite damping can be a simple technique for monitor-

ing and evaluating changes in phase microstructure caused by the composite

environment. Because the phases may be affected differently, it is im-

portant to vibrate specimens in directions which accentuate as much as
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transverse B/A1 data suggest that the 270° C composite damping peak ob-

served after heat treatment was produced by a thermally-induced micro-

structural change within the 6061 aluminum matrix. The question whether

this change may somehow be an indication of composite strength degradation

has yet to be answered. Indeed the relatively weak M2 panel displayed

this same damping structure in the as-fabricated condition. In any case,

it appears that damping measurements near 270° C can be a practical tool

for evaluating the thermal history of the matrix and thus of the B/Al

composite.

CONCLUDING REMARKS

The proven success of the flexural vibration test described here

should now permit easy acquisition of accurate temperature-dependent

dynamic property data for any composite material in bar form. Because

of the resonance requirement, test frequencies are fixed by the specimen

dimensions and the tone number of the free-free flexural mode. Although

low amplitude studies are necessitated by use of the electrostatic force

and detection technique, measurement temperatures greater than 500" C

can be achieved.

The availability of time-temperature dynamic data coupled with the

predictive accuracy of composite theory implies a future potential for

utilizing such data for the basic examination of environmental effects on

composite macrostructure and microstructure. If this information can be

correlated with variations in macroscopic properties, dynamic examination

becomes a valuable tool for evaluation and prediction of gross composite

behavior as a function of environmental conditions. Thus from the results

_	
,	 ,
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of this explo 'u ry B/A1 study, it is clear that future research must be

performed to determine the practical significance of the observed changes

in fiber-matrix bonding and in fiber and matrix microstructure which oc-

curred during composite fabrication and use.
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APPENDIX I

Frequency Constants

To account for rotary inertia and shear effects on the free-free

flexural vibration of a uniform beam, Huang (6) has shown that the fre-

quency constants b 	 of Eq. (3) can be determined from a transcendental

equation which includes the Timoschenko constant k and the modulus G

for shear deformation transverse to the beam length. To solve this equa-

tion for beams with large R/h ratios, one can make the first order

approximation

bn = b 0(1 + a n )	 (31)

where a << 1 and b° are the solutions at zero beam thickness
n	 n

t	 (Bernoulli-Euler theory). Substituting Eq. (31) into Huang's Eq. (36),

one finds for the two lowest symmetrical tones that

b1 = 22.3733

=	 r 2 (24.74 + 6.15 E/kG)	 (32)

2	 1	 1 + r 2 (42.2 + 14.8 E/kG)

and

b3 = 120.9034

= r 2 (93.43 + 49.45 E/kG)	
(33)

3	 1 + r 2 (170 + 104 E/kG)

For a beam with rectangular cross section, r 2 = h 2 /12Q 2 and k = 5/6

(Ref. 19).

The above formulas were found to yield b 	 in excellent agreement

with the exact b 	 as long as 1 n < 0.1. Thus for rectangular beams with

ORIGINAL PAGE. IS
OF POUR QUALITY



E.
33

	

^I
E/C < 4 (such as 50 volume percent B/A1), Eq. (32) can be used to cal-

culate b 	 for beams with R/h > 6 and Eq. (33) to calculate b 3 for

beams with R/h > 15. Dudek (20) has discussed the frequency effects

for composite beams with large E/G ratios.

i
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APPENDIX II

Composite Flexural Modulus

The flexural dynamic modulus of a long specimen can be calculated

from

E  = J E 
Y 

z 2 ds2/	 z2 dSZ

SZ

where E 	 is the longitudinal dynamic Young's modulus for the volume

element dQ located a distance z above the neutral bend plane. To

determine E 	 for a unidirectional composite with fibers aligned within

the plane of flexural vibration (axial mode), one can assume a rule-

of-mixtures for the modulus E 	 of each composite layer of thickness

dz. Tnat is,

EY(z) = Em + (E f - Em)vf(z)

where o f is the effective volume fraction of fibers in the volume ele-

ment dQ = wk dz. Using this approach for a composite with N identical

plys each of thickness Lh = h/N, one finds from Eq. (34) that

Eb = E 11 - 
(Ef - Em)vfPN

where

P  = [1 - 3d
2
/4 WO 2 ]IN 2

Here of is the fiber volume fraction of the composite and d is the

fiber diameter. Thus as ply number increases, E 	 becomes essentially

equal to E li , the tensile modulus predicted by the rule-of-mixtures for

uniaxial extension parallel to the fiber direction.

ORIGINAL
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TABLE 1. - B/A1 SPECIMEN PROPERTIES AT 22° C

Manufacturer Average Average Dynamic modulus at ^-2000 Hz, GPa

(matrix alloy) fiber matrix
volume density, Experimental Theory
fraction, 3

g/cm
L11 E22

M1	 (6061) 50.4±0.7 2.60±0.02 249±3 244±5

M1 (6061) 52.0±0.7 2.64±0.03 248±4 252±5

M1	 (6061) 51.4±0.7 2.60±0.03 249±3 247±5

M1 (1100) 48.5_±0.9 2.62±0.03 247±5 237±6

M2	 (6061) 46.7±0.8 2.64±0.04 219±5 231±5

M2 (6061) 46.7±0.8 2.64±0.04 138±7 154±3

TABLE 2. - B/A1 PHASE PROPERTIES AT 22° C

TDensity, Dynamic modulus Poisson's Coefficient

g/cm3
at 2000 Hz, ratio of thermal

GPa expansion,

,C-1

(e)

0.13
i

5.0x10-6Fiber:	 203 um boron 2.410 414±6c

on tungstena

69d 0.33 25.5x10-6Matrix:	 1100 or 6061 2.70

aluminum alloyb

aReference 3.

bReference 13.

cElastic Young's modulus corrected for anelastic effects (-1

dEstimated from the Voigt and Reuss averages of single crystal data.

eAverage value between 20° and 300° C.
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