1,581 research outputs found
Status of the GINGER project
Large frame Ring laser gyroscopes, based on the Sagnac effect, are top
sensitivity instrumentation to measure angular velocity with respect to the
fixed stars. GINGER (Gyroscopes IN GEneral Relativity) project foresees the
construction of an array of three large dimension ring laser gyroscopes,
rigidly connected to the Earth. GINGER has the potentiality to measure general
relativity effects and Lorentz Violation in the gravity sector, once a
sensitivity of , or better, of the Earth rotation rate is obtained.
Being attached to the Earth crust, the array will also provide useful data for
geophysical investigation. For this purpose, it is at present under
construction as part of the multi-components observatory called Underground
Geophysics at Gran Sasso (UGSS). Sensitivity is the key point to determine the
relevance of this instrument for fundamental science. The most recent progress
in the sensitivity measurement, obtained on a ring laser prototype called
GINGERINO, indicates that GINGER should reach the level of 1 part in
of the Earth rotation rate.Comment: 6 pages, 5 figure
Analysis of ring laser gyroscopes including laser dynamics
Inertial sensors stimulate very large interest, not only for their
application but also for fundamental physics tests. Ring laser gyros, which
measure angular rotation rate, are certainly among the most sensitive inertial
sensors, with excellent dynamic range and bandwidth. Large area ring laser
gyros are routinely able to measure fractions of prad/s, with high duty cycle
and bandwidth, providing fast, direct and local measurement of relevant
geodetic and geophysical signals. Improvements of a factor would open
the windows for general relativity tests, as the GINGER project, an Earth based
experiment aiming at the Lense-Thirring test at level. However, it is
well known that the dynamics of the laser induces non-linearities, and those
effects are more evident in small scale instruments. Sensitivity and accuracy
improvements are always worthwhile, and in general there is demand for high
sensitivity environmental study and development of inertial platforms, where
small scale transportable instruments should be used. We discuss a novel
technique to analyse the data, aiming at studying and removing those
non-linearity. The analysis is applied to the two ring laser prototypes GP2 and
GINGERINO, and angular rotation rate evaluated with the new and standard
methods are compared. The improvement is evident, it shows that the
back-scatter problem of the ring laser gyros is negligible with a proper
analysis of the data, improving the performances of large scale ring laser
gyros, but also indicating that small scale instruments with sensitivity of
nrad/s are feasible.Comment: 9 pages and 7 figure
Interferometric length metrology for the dimensional control of ultra-stable Ring Laser Gyroscopes
We present the experimental test of a method for controlling the absolute
length of the diagonals of square ring laser gyroscopes. The purpose is to
actively stabilize the ring cavity geometry and to enhance the rotation sensor
stability in order to reach the requirements for the detection of the
relativistic Lense-Thirring effect with a ground-based array of optical
gyroscopes. The test apparatus consists of two optical cavities 1.32 m in
length, reproducing the features of the ring cavity diagonal resonators of
large frame He-Ne ring laser gyroscopes. The proposed measurement technique is
based on the use of a single diode laser, injection locked to a frequency
stabilized He-Ne/Iodine frequency standard, and a single electro-optic
modulator. The laser is modulated with a combination of three frequencies
allowing to lock the two cavities to the same resonance frequency and, at the
same time, to determine the cavity Free Spectral Range (FSR). We obtain a
stable lock of the two cavities to the same optical frequency reference,
providing a length stabilization at the level of 1 part in , and the
determination of the two FSRs with a relative precision of 0.2 ppm. This is
equivalent to an error of 500 nm on the absolute length difference between the
two cavities
Observational and Experimental Gravity
We indicate the progress of experimental gravity, present an outlook in this
field, and summarise the Observational/Experimental Parallel Session together
with a related plenary talk on gravitational waves of the 2nd LeCosPA
Symposium.Comment: 1 figure, Second LeCosPa Simposium, December 2015, Taipei Taiwa
Sagnac Gyroscopes and the GINGER Project
Large-frame optical Sagnac gyroscopes, more commonly called ring laser gyroscopes, are considered the only device able to provide fast and very high sensitivity measurement of the length of the day (LOD) and of the Earth rotation axis variations. Several large-frame Sagnac gyros are presently operative with a high duty cycle and a sensitivity well below fractions of nrad/s in 1 s measurement. At present, other inertial angular rotation sensors are not competitive with ring laser gyroscopes. The feasibility depends on the so-called hetero-lithic ring lasers. The present state of the art is reported and the feasibility of the main goals for geodesy discussed
MAD2L2 promotes open chromatin in embryonic stem cells and derepresses the Dppa3 locus.
The chromatin of naive embryonic stem cells (ESCs) has a largely open configuration, as evident by the lack of condensed heterochromatin and the hypomethylation of DNA. Several molecular mechanisms promoting this constellation were previously identified. Here we present evidence for an important epigenetic function of MAD2L2, a protein originally known for its role in DNA damage repair, and for its requirement in germ cell development. We demonstrate using super-resolution microscopy that numerous MAD2L2 microfoci are exclusively associated with euchromatin, similar to other factors of the DNA damage response. In the absence of MAD2L2 the amount of heterochromatin demarcated by H3K9me2 was significantly increased. Among the most strongly suppressed genes was Dppa3, an ESC- and germ-cell-specific gene regulating DNA methylation. In Mad2l2-deficient ESCs 5-methylcytosine levels were globally increased, while several imprinted genes became hypomethylated and transcriptionally activated. Our results emphasize the important function of MAD2L2 for the open chromatin configuration of ESCs
Voltage-dependent activation and inactivation of calcium channels in PC12 cells. Correlation with neurotransmitter release.
The existence and mechanisms of inactivation of voltage-gated Ca2+ channels are important, but still debatable, physiological problems. By using the Ca2+ indicators quin2 and fura-2, we demonstrate that in PC12 cells voltage-gated Ca2+ channels undergo inactivation dependent on both voltage and [Ca2+]i. Inactivation, however, is never complete and a small number of channels remains open during prolonged depolarization, explaining the steady state elevation of [Ca2+]i observed in cells depolarized with high KCl. A close parallel exists between Ca2+ channel inactivation and the transient nature of neurotransmitter release: secretion is rapidly stimulated during the first 30 s of depolarization, when a transient overshoot in [Ca2+]i can be demonstrated, while it is negligible during the following period, despite the persistence of an elevated [Ca2+]i; predepolarization in Ca2+-free medium and subsequent addition of Ca2+ (a condition which allows the development of the voltage inactivation) abolishes the fast phase of secretion, while not modifying the steady state [Ca2+]i eventually attained; and increases in the intracellular Ca2+ buffering decreases the amplitude of the fast secretion phase induced by KCl without altering the steady state [Ca2+]i. We suggest that localized [Ca2+]i gradients form close to the plasma membrane shortly after depolarization and that the [Ca2+]i reached in these regions is the relevant parameter in the regulation of secretion
- …