432 research outputs found

    Analysis of ring laser gyroscopes including laser dynamics

    Full text link
    Inertial sensors stimulate very large interest, not only for their application but also for fundamental physics tests. Ring laser gyros, which measure angular rotation rate, are certainly among the most sensitive inertial sensors, with excellent dynamic range and bandwidth. Large area ring laser gyros are routinely able to measure fractions of prad/s, with high duty cycle and bandwidth, providing fast, direct and local measurement of relevant geodetic and geophysical signals. Improvements of a factor 10−10010-100 would open the windows for general relativity tests, as the GINGER project, an Earth based experiment aiming at the Lense-Thirring test at 1%1\% level. However, it is well known that the dynamics of the laser induces non-linearities, and those effects are more evident in small scale instruments. Sensitivity and accuracy improvements are always worthwhile, and in general there is demand for high sensitivity environmental study and development of inertial platforms, where small scale transportable instruments should be used. We discuss a novel technique to analyse the data, aiming at studying and removing those non-linearity. The analysis is applied to the two ring laser prototypes GP2 and GINGERINO, and angular rotation rate evaluated with the new and standard methods are compared. The improvement is evident, it shows that the back-scatter problem of the ring laser gyros is negligible with a proper analysis of the data, improving the performances of large scale ring laser gyros, but also indicating that small scale instruments with sensitivity of nrad/s are feasible.Comment: 9 pages and 7 figure

    P2X receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    P2X receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2X Receptors [46, 134]) have a trimeric topology [118, 132, 177] with two putative TM domains, gating primarily Na+, K+ and Ca2+, exceptionally Cl-. The Nomenclature Subcommittee has recommended that for P2X receptors, structural criteria should be the initial criteria for nomenclature where possible. X-ray crystallography indicates that functional P2X receptors are trimeric and three agonist molecules are required to bind to a single receptor in order to activate it [132, 88, 96, 161]. Native receptors may occur as either homotrimers (e.g. P2X1 in smooth muscle) or heterotrimers (e.g. P2X2:P2X3 in the nodose ganglion [251], P2X1:P2X5 in mouse cortical astrocytes [146], and P2X2:P2X5 in mouse dorsal root ganglion, spinal cord and mid pons [50, 207]. P2X2, P2X4 and P2X7 receptors have been shown to form functional homopolymers which, in turn, activate pores permeable to low molecular weight solutes [229]. The hemi-channel pannexin-1 has been implicated in the pore formation induced by P2X7 [188], but not P2X2 [38], receptor activation

    Functionalized aliphatic polyketones with germicide activity

    Get PDF
    The COVID-19 pandemic has further confirmed to the community that direct contact with contaminated surfaces and objects represents an important source of pathogen spreading among humans. Therefore, it is of paramount importance to design effective germicidal paints to ensure a rapid and potent disinfectant action of surfaces. In this work, we design novel germicide polymeric coatings by inserting quaternary ammonium and sugar groups on the macromolecular backbone, thus respectively endowing the polymer with germicide features and hydrophilicity to interact with the surfaces. An aliphatic polyketone was selected as a starting polymer matrix that was functionalized with primary amine derivatives via the Paal–Knorr reaction. The resulting polymers were deposited on cellulose filter papers and checkboard charts with excellent coating yield and substrate coverage as determined by scanning electron microscopy for cellulose. Remarkably, the substrates coated by the functional polymers bearing quaternary ammonium compounds showed excellent bactericide properties with antibacterial rate of 99% and logarithmic reduction of >3. Notably, the polymers with higher hydrophobicity showed better retention on the substrate after being treated with water at neutral pH

    The shed P2X7 receptor is an index of adverse clinical outcome in COVID-19 patients

    Get PDF
    Introduction: The pathophysiology of the Corona Virus Disease 2019 (COVID-19) is incompletely known. A robust inflammatory response caused by viral replication is a main cause of the acute lung and multiorgan injury observed in critical patients. Inflammasomes are likely players in COVID-19 pathogenesis. The P2X7 receptor (P2X7R), a plasma membrane ATP-gated ion channel, is a main activator of the NLRP3 inflammasome, of the ensuing release of inflammatory cytokines and of cell death by pyroptosis. The P2X7R has been implicated in COVID-19-dependent hyperinflammation and in the associated multiorgan damage. Shed P2X7R (sP2X7R) and shed NLRP3 (sNLRP3) have been detected in plasma and other body fluids, especially during infection and inflammation. Methods: Blood samples from 96 patients with confirmed SARS-CoV-2 infection with various degrees of disease severity were tested at the time of diagnosis at hospital admission. Standard haematological parameters and IL-6, IL-10, IL-1β, sP2X7R and sNLRP3 levels were measured, compared to reference values, statistically validated, and correlated to clinical outcome. Results: Most COVID-19 patients included in this study had lymphopenia, eosinopenia, neutrophilia, increased inflammatory and coagulation indexes, and augmented sNLRP3, IL-6 and IL-10 levels. Blood concentration of sP2X7R was also increased, and significantly positively correlated with lymphopenia, procalcitonin (PCT), IL-10, and alanine transaminase (ALT). Patients with increased sP2X7R levels at diagnosis also showed fever and respiratory symptoms, were more often transferred to Pneumology division, required mechanical ventilation, and had a higher likelihood to die during hospitalization. Conclusion: Blood sP2X7R was elevated in the early phases of COVID-19 and predicted an adverse clinical outcome. It is suggested that sP2X7R might be a useful marker of disease progression
    • …
    corecore