93 research outputs found

    Silicon nanofluidic membrane for electrostatic control of drugs and analytes elution

    Get PDF
    Individualized long-term management of chronic pathologies remains an elusive goal despite recent progress in drug formulation and implantable devices. The lack of advanced systems for therapeutic administration that can be controlled and tailored based on patient needs precludes optimal management of pathologies, such as diabetes, hypertension, rheumatoid arthritis. Several triggered systems for drug delivery have been demonstrated. However, they mostly rely on continuous external stimuli, which hinder their application for long-term treatments. In this work, we investigated a silicon nanofluidic technology that incorporates a gate electrode and examined its ability to achieve reproducible control of drug release. Silicon carbide (SiC) was used to coat the membrane surface, including nanochannels, ensuring biocompatibility and chemical inertness for long-term stability for in vivo deployment. With the application of a small voltage (≀ 3 V DC) to the buried polysilicon electrode, we showed in vitro repeatable modulation of membrane permeability of two model analytes—methotrexate and quantum dots. Methotrexate is a first-line therapeutic approach for rheumatoid arthritis; quantum dots represent multi-functional nanoparticles with broad applicability from bio-labeling to targeted drug delivery. Importantly, SiC coating demonstrated optimal properties as a gate dielectric, which rendered our membrane relevant for multiple applications beyond drug delivery, such as lab on a chip and micro total analysis systems (”TAS)

    Postprandial glucose and HbA1c are associated with severity of obstructive sleep apnoea in non-diabetic obese subjects

    Get PDF
    Introduction: Obstructive sleep apnoea (OSA) is an underdiagnosed condition frequently associated with glycaemic control impairment in patients with type 2 diabetes. Aim: To assess the relationship between glycometabolic parameters and OSA in obese non-diabetic subjects. Methods: Ninety consecutive subjects (mean age 44.9 ± 12 years, mean BMI 42.1 ± 9 kg/m2) underwent polysomnography and a 2-h oral glucose tolerance test (OGTT). Results: OSA was identified in 75% of subjects, with a higher prevalence of males compared to the group of subjects without OSA (62% vs 32%, p = 0.02). Patients with OSA had comparable BMI (42.8 kg/m2 vs 39.4 kg/m2), a higher average HbA1c (5.8% vs 5.4%, p < 0.001), plasma glucose at 120 min during OGTT (2 h-PG; 123 mg/dl vs 97 mg/dl, p = 0.009) and diastolic blood pressure (81.1 mmHg vs 76.2 mmHg, p = 0.046) than obese subjects without OSA. HbA1c and 2 h-PG were found to be correlated with the apnoea-hypopnoea index (AHI; r = 0.35 and r = 0.42, respectively) and with percent of sleep time with oxyhaemoglobin saturation < 90% (ST90; r = 0.44 and r = 0.39, respectively). Further, in a linear regression model, ST90 and AHI were found to be the main determinants of 2 h-PG (ÎČ = 0.81, p < 0.01 and ÎČ = 0.75, p = 0.02, respectively) after controlling for age, sex, waist circumference, physical activity, and C-reactive protein. Similarly, ST90 and AHI persisted as independent determinants of HbA1c (ÎČ = 0.01, p = 0.01 and ÎČ = 0.01, p = 0.01, respectively). Conclusion: Beyond the traditional clinical parameters, the presence of a normal-high value of 2 h-PG and HbA1c should raise suspicion of the presence of OSA in obese subjects

    Synthetic long oligonucleotides to generate artificial templates for use as positive controls in molecular assays: drug resistance mutations in influenza virus as an example

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Positive controls are an integral component of any sensitive molecular diagnostic tool, but this can be affected, if several mutations are being screened in a scenario of a pandemic or newly emerging disease where it can be difficult to acquire all the necessary positive controls from the host. This work describes the development of a synthetic oligo-cassette for positive controls for accurate and highly sensitive diagnosis of several mutations relevant to influenza virus drug resistance.</p> <p>Results</p> <p>Using influenza antiviral drug resistance mutations as an example by employing the utility of synthetic paired long oligonucleotides containing complementary sequences at their 3' ends and utilizing the formation of oligonucleotide dimers and DNA polymerization, we generated ~170bp dsDNA containing several known specific neuraminidase inhibitor (NAI) resistance mutations. These templates were further cloned and successfully applied as positive controls in downstream assays.</p> <p>Conclusion</p> <p>This approach significantly improved the development of diagnosis of resistance mutations in terms of time, accuracy, efficiency and sensitivity, which are paramount to monitoring the emergence and spread of antiviral drug resistant influenza strains. Thus, this may have a significantly broader application in molecular diagnostics along with its application in rapid molecular testing of all relevant mutations in an event of pandemic.</p

    Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?

    Get PDF
    Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system

    Alexithymia in juvenile primary headache sufferers: a pilot study

    Get PDF
    Starting in the 1990s, there has been accumulating evidence of alexithymic characteristics in adult patients with primary headache. Little research has been conducted, however, on the relationship between alexithymia and primary headache in developmental age. In their research on alexithymia in the formative years, the authors identified one of the most promising prospects for research, as discussed here. The aim of this study was to verify whether there is: (a) a link between tension-type headache and alexithymia in childhood and early adolescence; and (b) a correlation between alexithymia in children/preadolescents and their mothers. This study was based on an experimental group of 32 patients (26 females and 6 males, aged from 8 to 15 years, mean 11.2 ± 2.0) suffering from tension-type headache and 32 control subjects (26 females and 6 males, aged from 8 to 15 years, mean 11.8 ± 1.6). Tension-type headache was diagnosed by applying the International Headache Classification (ICHD-II, 2004). The alexithymic construct was measured using an Italian version of the Alexithymia Questionnaire for Children in the case of the juvenile patients and the Toronto Alexithymia Scale (TAS-20) for their mothers. Higher rates of alexithymia were observed in the children/preadolescents in the experimental group (EG) than in the control group; in the EG there was no significant correlation between the alexithymia rates in the children/preadolescents and in their mothers

    Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin

    Get PDF
    Evolutionary consequences of host shifts represent a challenge to identify the mechanisms involved in the emergence of influenza A (IA) viruses. In this study we focused on the evolutionary history of H7 IA virus in wild and domestic birds, with a particular emphasis on host shifts consequences on the molecular evolution of the hemagglutinin (HA) gene. Based on a dataset of 414 HA nucleotide sequences, we performed an extensive phylogeographic analysis in order to identify the overall genetic structure of H7 IA viruses. We then identified host shift events and investigated viral population dynamics in wild and domestic birds, independently. Finally, we estimated changes in nucleotide substitution rates and tested for positive selection in the HA gene. A strong association between the geographic origin and the genetic structure was observed, with four main clades including viruses isolated in North America, South America, Australia and Eurasia-Africa. We identified ten potential events of virus introduction from wild to domestic birds, but little evidence for spillover of viruses from poultry to wild waterbirds. Several sites involved in host specificity (addition of a glycosylation site in the receptor binding domain) and virulence (insertion of amino acids in the cleavage site) were found to be positively selected in HA nucleotide sequences, in genetically unrelated lineages, suggesting parallel evolution for the HA gene of IA viruses in domestic birds. These results highlight that evolutionary consequences of bird host shifts would need to be further studied to understand the ecological and molecular mechanisms involved in the emergence of domestic bird-adapted viruses

    A Systematic Molecular Pathology Study of a Laboratory Confirmed H5N1 Human Case

    Get PDF
    Autopsy studies have shown that human highly pathogenic avian influenza virus (H5N1) can infect multiple human organs other than just the lungs, and that possible causes of organ damage are either viral replication and/or dysregulation of cytokines and chemokines. Uncertainty still exists, partly because of the limited number of cases analysed. In this study, a full autopsy including 5 organ systems was conducted on a confirmed H5N1 human fatal case (male, 42 years old) within 18 hours of death. In addition to the respiratory system (lungs, bronchus and trachea), virus was isolated from cerebral cortex, cerebral medullary substance, cerebellum, brain stem, hippocampus ileum, colon, rectum, ureter, aortopulmonary vessel and lymph-node. Real time RT-PCR evidence showed that matrix and hemagglutinin genes were positive in liver and spleen in addition to positive tissues with virus isolation. Immunohistochemistry and in-situ hybridization stains showed accordant evidence of viral infection with real time RT-PCR except bronchus. Quantitative RT-PCR suggested that a high viral load was associated with increased host responses, though the viral load was significantly different in various organs. Cells of the immunologic system could also be a target for virus infection. Overall, the pathogenesis of HPAI H5N1 virus was associated both with virus replication and with immunopathologic lesions. In addition, immune cells cannot be excluded from playing a role in dissemination of the virus in vivo

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 M⊙M_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.30 < e \leq 0.3 at 0.330.33 Gpc−3^{-3} yr−1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming

    Get PDF
    Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant \u3b2-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response
    • 

    corecore