5,498 research outputs found

    Coupled quantum-classical transport in silicon nanowires

    Get PDF
    We present an extended hydrodynamic model describing the transport of electrons in the axial direction of a silicon nanowire. This model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, coupled to the Schr¨odinger-Poisson system. Explicit closure relations for the high-order fluxes and the production terms are obtained without any fitting procedure, including scattering of electrons with acoustic and non polar optical phonons. We derive, using this model, the electron mobility

    A statistical enhancement method for Direct Simulation Monte Carlo in semiconductor devices

    Get PDF
    The Multicomb variance reduction technique has been introduced in the Direct Simulation Monte Carlo for submicrometric semiconductors. We have implemented the method in a silicon diode n+ − n − n+ and demonstrated its effectiveness. The steady-state statistical error and the figures of merit are obtained. The results of the simulations indicate that the method can enhance the high-energy distribution tail with a good accuracy

    Quantum complementarity of microcavity polaritons

    Get PDF
    We present an experiment that probes polariton quantum correlations by exploiting quantum complementarity. Specifically, we find that polaritons in two distinct idler-modes interfere if and only if they share the same signal-mode so that "which-way" information cannot be gathered. The experimental results prove the existence of polariton pair correlations that store the "which-way" information. This interpretation is confirmed by a theoretical analysis of the measured interference visibility in terms of quantum Langevin equations

    An Ultraluminous Supersoft X-ray Source in M81: An Intermediate-Mass Black Hole?

    Full text link
    Ultraluminous supersoft X-ray sources (ULSSS) exhibit supersoft spectra with blackbody temperatures of 50-100 eV and bolometric luminosities above 103910^{39} erg s−1^{-1}, and are possibly intermediate mass black holes (IMBHs) of ≥103M⊙\ge10^3 M_\odot or massive white dwarfs that are progenitors of type Ia supernovae. In this letter we report our optical studies of such a source in M81, M81-ULS1, with HST archive observations. M81-ULS1 is identified with a point-like object, the spectral energy distribution of which reveals a blue component in addition to the companion of an AGB star. The blue component is consistent with the power-law as expected from the geometrically-thin accretion disk around an IMBH accretor, but inconsistent with the power-law as expected from the X-ray irradiated flared accretion disk around a white dwarf accretor. This result is strong evidence that M81-ULS1 is an IMBH instead of a white dwarf.Comment: 12 pages, 1 table, 3 figure

    Status of the EDELWEISS-II experiment

    Full text link
    EDELWEISS is a direct dark matter search experiment situated in the low radioactivity environment of the Modane Underground Laboratory. The experiment uses Ge detectors at very low temperature in order to identify eventual rare nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo. We present results of the commissioning of the second phase of the experiment, involving more than 7 kg of Ge, that has been completed in 2007. We describe two new types of detectors with active rejection of events due to surface contamination. This active rejection is required in order to achieve the physics goals of 10-8 pb cross-section measurement for the current phase

    Two-loop Euler-Heisenberg effective actions from charged open strings

    Full text link
    We present the multiloop partition function of open bosonic string theory in the presence of a constant gauge field strength, and discuss its low-energy limit. The result is written in terms of twisted determinants and differentials on higher-genus Riemann surfaces, for which we provide an explicit representation in the Schottky parametrization. In the field theory limit, we recover from the string formula the two-loop Euler-Heisenberg effective action for adjoint scalars minimally coupled to the background gauge field.Comment: 32 pages, 3 eps figures, plain LaTeX. References added, minor changes to the text. Published version, affiliation correcte

    Effect of sunlight exposure on anthocyanin and non-anthocyanin phenolic levels in pomegranate juices by high resolution mass spectrometry approach

    Get PDF
    Quali-quantitative analyses of anthocyanins and non-anthocyanin phenolic compounds performed with the use of liquid chromatography coupled with high resolution mass spectrometry, were evaluated in juice of pomegranate fruits (‘Dente di Cavallo’), in relation to different light exposures (North, South, West and East). A total of 16 compounds were identified, including phenolic acids, flavonoids, hydrolysable tannins, and anthocyanins, known for their health-promoting effects. Striking differences were observed about the total phenolic content, which was high in juices from fruits with east- and north-facing position, while it was lower in juices facing south. The greatest contents of total flavonoids and anthocyanins were recorded in fruit juices with southern exposure; however, there are no great differences in the content in phenolic acids. Tannins were mainly synthesized in fruit juices with West exposure. The results showed that the position within the tree had no significant effects on color juice, however, it significantly (p < 0.05) affected data on fruit weight, soluble sugars and juice yield. Remarkable synergies existed among polyphenols and phytochemicals in pomegranate juice, but collecting fruits with different solar exposure could enhance different health benefits, i.e., the juices with higher polyphenols content could have more anticancer effect or those with higher tannins content could have more antimicrobial effect

    Roughness effect on the correction factor of surface velocity for rill flows

    Get PDF
    Flow velocity is one of the most important hydrodynamic variables for both channelized (rill and gullies) and interrill erosive phenomena. The dye tracer technique to measure surface flow velocity Vs is based on the measurement of the travel time of a tracer needed to cover a known distance. The measured Vs must be corrected to obtain the mean flow velocity V using a factor αv = V/Vs which is generally empirically deduced. The Vs measurement can be influenced by the method applied to time the travel of the dye-tracer and αv can vary in different flow conditions. Experiments were performed by a fixed bed small flume simulating a rill channel for two roughness conditions (sieved soil, gravel). The comparison between a chronometer-based (CB) and video-based (VB) technique to measure Vs was carried out. For each slope-discharge combination, 20 measurements of Vs, characterized by a sample mean Vm, were carried out. For both techniques, the frequency distributions of Vs/Vm resulted independent of slope and discharge. For a given technique, all measurements resulted normally distributed, with a mean equal to one, and featured by a low variability. Therefore, Vm was considered representative of surface flow velocity. Regardless of roughness, the Vm values obtained by the two techniques were very close and characterized by a good measurement precision. The developed analysis on αv highlighted that it is not correlated with Reynolds number for turbulent flow regime. Moreover, αv is correlated neither with the Froude number nor with channel slope. However, the analysis of the empirical frequency distributions of the correction factor demonstrated a slope effect. For each technique (CB, VB)-roughness (soil, gravel) combination, a constant correction factor was statistically representative even if resulted in less accurate V estimations compared to those yielded by the slope-specific correction factor

    Rill flow resistance law under sediment transport

    Get PDF
    Purpose: In this paper, a deduced flow resistance equation for open-channel flow was tested using measurements carried out in mobile bed rills with sediment-laden flows and fixed bed rills. The main aims were to (i) assess the effect of sediment transport on rill flow resistance, and (ii) test the slope-flow velocity relationship in fixed bed rills. Methods: The following analysis was developed: (i) a relationship between the Γ function of the velocity profile, the rill slope and the Froude number was calibrated using measurements carried out on fixed bed rills; (ii) the component of Darcy-Weisbach friction factor due to sediment transport was deduced using the corresponding measurements carried out on mobile bed rills (grain resistance and sediment transport) and the values estimated by flow resistance equation (grain resistance) for fixed bed rills in the same slope and hydraulic conditions; (iii) the Γ function relationship was calibrated using measurements carried out on mobile bed rills and the data of Jiang et al. (2018). Results: This analysis demonstrated that the effect of sediment transport on rill flow resistance law is appreciable only for 7.7% of the examined cases and that the theoretical approach allows for an accurate estimate of the Darcy-Weisbach friction factor. Furthermore, for both fixed and mobile beds, the mean flow velocity was independent of channel slope, as suggested by Govers (1992) for mobile bed rills. Conclusions: The investigation highlighted that the effect of sediment transport on rill flow resistance is almost negligible for most of the cases and that the experimental procedure for fixing rills caused the unexpected slope independence of flow velocity
    • …
    corecore