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Abstract. We present an extended hydrodynamic model describing the transport of
electrons in the axial direction of a silicon nanowire. This model has been formulated by
closing the moment system derived from the Boltzmann equation on the basis of the maxi-
mum entropy principle of Extended Thermodynamics, coupled to the Schrödinger-Poisson
system. Explicit closure relations for the high-order fluxes and the production terms are
obtained without any fitting procedure, including scattering of electrons with acoustic
and non polar optical phonons. We derive, using this model, the electron mobility.

1 INTRODUCTION

Silicon nanowires (SiNWs) are quasi one-dimensional structures in which the electrons
are spatially confined in the two transversal directions and free to move in the longitudinal
one. SiNW devices have been fabricated recently using lithographic techniques [1]. They
have attracted significant interest due to their potential to function as logic devices,
thermoelectric devices, and sensors. Therefore, it is crucial to accurately model and
estimate the performance of these devices.

By shrinking the dimension of electronic devices, effects of quantum confinement are
observed and the wave nature of the electrons must be taken into account. The Non-
Equilibrium Green Function formalism is the most advanced transport model for the
simulation of SiNW devices, but it necessitates rather intensive computational efforts since
it requires detailed information on the propagation of the electron wave packet injected
in the device. Under reasonable hypothesis, transport in low-dimension semiconductors
can be tackled coupling quantum and semiclassical tools. In fact, the main quantum
transport phenomena in SiNW transistors at room temperature, such as the source-to-
drain tunneling, and the conductance fluctuation induced by the quantum interference,
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become significant only when the longitudinal length (called channel) is smaller than 10nm
[2]. Therefore, for longer channels, semiclassical formulations based on the 1-D Multiband
Boltzmann Transport Equation (MBTE) can give reliable simulation results when it is
solved self-consistently with the 3-D Poisson and 2-D Schrödinger equations in order to
obtain the self-consistent potential and subband energies and wavefunctions [1]. Another
simplification comes from the use of the Effective Mass Approximation (EMA), which is
supposed to be still a good solution in the confining direction in the presence of disorder,
which is probably valid for semiconductor nanowires down to 5 nm in diameter, below
which atomistic electronic structure models need to be employed. Solving the MBTE
numerically is not an easy task, because it forms an integro-differential system in two
dimensions in the phase-space and one in time, with a complicate collisional operator.
The full solution of the MBTE can be obtained or by using the Monte Carlo (MC)
method [3]-[10] or by using deterministic numerical solvers [11],[12],[13] at expense of huge
computational times. Another alternative is to obtain from the MBTE hydrodynamic
models that are a good engineering-oriented approach. This can be achieved by taking
moments of the MBTE, and by closing the obtained hierarchy of balance equations as
well as modeling the production terms (i.e. the moments on the collisional operator).

2 Transport equations

In the following we shall consider a SiNW with rectangular cross section. For a quantum
wire with linear expansion in z-direction, and confined in the plane x-y, the normed
electron wave function ψ(x, y, z) can be written in the form

ψ(x, y, z) = χα(x, y)
eikzz

√
Lz

(1)

where χα(x, y) is the wave function of the α-th subband and the term eikzz/
√

Lz describes
an independent plane wave in z-direction confined to the normalization length, where
z ∈ [0, Lz] and kz is the wave vector number. In general the electron is subject to external
confining potential U , such as by a discontinuity in the band gap at an interface between
two materials, and also to the effect of the other electrons in the system. The simplest
approximation, called Hartree approximation, is to assume that the electrons as whole
produce an average electrostatic energy potential Vtot, and that a given electron feels the
resulting total potential

Vtot = U(x, y) − eΦ(x, y, z) . (2)

The normed wave function satisfies the Schrödinger equation in the Effective Mass Ap-
proximation, i.e. [

Ec −
�2

2m∗
∆ + Vtot(x, y, z)

]
ψ = E ψ (3)

where E is the total energy, Ec the conduction band edge energy, and m∗ denotes the
effective mass of the electron in the conduction band. By inserting eq.(1) into eq.(3), in
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each z-th cross section of the device, one obtains the following equation for the envelope
function χαz(x, y)

[
−

�2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
+ U − eΦ

]
χαz = εαzχαz , Eαz = εαz +

�2k2
z

2m∗
+ Ec (4)

where εαz is the kinetic energy associated with the confinement in the x-y plane, and we
have assumed parabolic band approximation. The term Φ satisfies the Poisson equation

∇ · [ǫ∇Φ(x, y, z)] = e(n − ND + NA) (5)

where ND, NA are the doping profile (due to donors and acceptors) and n(x, y, z, t) is the
electron density, which depends on χαz

n(x, y, z, t) =
∑

α

ρα(z, t)|χαz(x, y, t)|2 (6)

where ρα is the subband linear density in the z-direction

ρα(z, t) =
2

2π

∫
fα(z, kz, t)dkz (7)

fα being the electron distribution function in the α-subband. For an assigned confining
potential, one has to solve a coupled problem formed by eqs.(4), (5) and (6) to find εαz, χαz

in each cross-section.
The transport in the z-th direction is described using the MBTE [1]

∂fα

∂t
+ vz(kz)

∂fα

∂z
−

e

�
Ez

∂fα

∂kz

=
∑
α′

∑
η

Cη[fα, fα′ ] (8)

where e is the absolute value of the electron charge, � the Planck constant divided by 2π,
and

vz =
1

�
∂Eαz

∂kz

=
�kz

m∗
, Ez = −

1

e

∂Eαz

∂z
(9)

are respectively the electron group velocity and the electric field. In the low density
approximation (not-degenerate case), the collisional operator writes

Cη[fα, fα′ ] =
Lz

2π

∫
dk′

z {wη(k
′, k)fα′(k′

z) − wη(k, k
′)fα(kz)} (10)

where wη(k, k
′) = wη(α, kz, α

′, k′

z) is the η-th scattering rate. When α = α′ we have an
intra-subband scattering, otherwise we have an inter-subband scattering.

Scattering mechanisms in SiNWs must comprise acoustic phonon scattering (bulk and
confined), non-polar optical phonon scattering, surface scattering, scattering with ionized
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impurities, as well as dielectric screening [4], [5]. However in this preliminary study, for
the sake of simplicity, we shall limit ourselves to consider just scattering with optical and
acoustic phonons. For the bulk acoustic phonon scattering, in the elastic equipartition
approximation, the transition rate is given by [1]

wac(k, k
′) = sacG

αα′

δ (Eα′ − Eα) , sac =
2πD2

AkBTL

ρ�v2
sLz

(11)

where DA is the acoustic deformation potential (9 eV), TL the lattice temperature, ρ the
mass density ( 2.33 gr/cm3), vs the sound speed (6960 m/sec), and Gαα′

the confinement
factor

Gαα′

=

∫
|χα′(x, y)|2|χα(x, y)|2dxdy . (12)

For the optical phonons we have

wop(k, k
′) = sop

[
g0 +

1

2
∓

1

2

]
Gαα′

δ (Eα′ − Eα ∓ �ω0) , sop =
πD2

0

ρω0Lz

(13)

where D0 is the optical deformation potential (11.4 108 eV/cm), �ω0 the effective optical
phonon energy (63 meV), and g0 the Bose-Einstein phonon occupation number.

3 Extended Hydrodynamic model

By multiplying the MBTE (8) by the weight functions ψA = {1, vz, εz, vzεz}, and
integrating in the kz space, one obtains the following hydrodynamic-like equations

∂ρα

∂t
+

∂(ραV α)

∂z
= ρα

∑
α′

Cαα′

ρ (14)

∂(ραV α)

∂t
+

2

m∗

∂(ραW α)

∂z
+

e

m∗
ραEz = ρα

∑
α′

Cαα′

V (15)

∂(ραW α)

∂t
+

∂(ραSα)

∂z
+ ραeEzV

α = ρα
∑
α′

Cαα′

W (16)

∂(ραSα)

∂t
+

∂(ραFα)

∂z
+ 3

e

m∗
ραEzW

α = ρα
∑
α′

Cαα′

S (17)

in the unknowns (called moments)

V α =
2

(2π)

1

ρα

∫

R
fα(z, kz, t)vzdkz (subband velocity), (18)

W α =
2

(2π)

1

ρα

∫

R
fα(z, kz, t)εzdkz (subband energy), (19)

Sα =
2

(2π)

1

ρα

∫

R
fα(z, kz, t)εzvzdkz (subband energy- flux) (20)
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and the higher-order flux Fα, and the production terms

F α =
2

(2π)

1

ρα

∫
fαv2

zεzdkz (21)

Cαα′

ρ =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]dkz (22)

Cαα′

V =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]vzdkz (23)

Cαα′

W =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]εzdkz (24)

Cαα′

S =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]εzvzdkz . (25)

This system of PDEs is of hyperbolic type and it is not closed, i.e. there are more un-
knowns than equations. The Maximum Entropy Principle leads to a systematic way for
obtaining constitutive relations on the basis of the information theory [14], as already
proved successfully in the bulk case [15]-[19], and for quantum well structures [20], [21].
Actually, in a semiconductor electrons interact with phonons describing the thermal vi-
brations of the ions placed at the points of the crystal lattice. However, since we are
considering the phonon gas as a thermal bath, one has to extremize only the electron
component of the entropy. We define the entropy of the electronic system as

Se =
∑

α

|χα(x, y, t)|2Sα
e (26)

Sα
e = −

2

(2π)
kB

∫

R
(fα log fα − fα)dkz , (27)

and, according to MEP, we estimate the fα’s as the distributions that maximize Se under
the constraints that the basic moments, which we have previously considered, are assigned.
In a neighborhood of local thermal equilibrium, this distribution function writes [22]

f̂α = exp

(
−

λα

kB

− λα
W εz

) {
1 − τ

(
λ̂α

V vz + λ̂α
Svzεz

)}
(28)

where the quantities (λα, λα
W , λ̂α

V , λ̂α
S) are known functions of the moments

{ρα, V α,W α, Sα}. By using the distribution function (28) it is possible to evaluate the
unknown functions appearing in the balance equations by integration. In this way the
higher-order flux term writes

Fα =
6(W α)2

m∗
(29)
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as well as the production terms Cαα′

ρ , Cαα′

V , Cαα′

W , Cαα′

S have been determined. We want un-
derline that this Extended Hydrodynamic model has been closed by using first principles,
and it is free of any fitting parameters.

4 Electron Mobility

The mobility is one of the most important parameters that determine the performance
of a field-effect transistor. At low electric field, the carrier drift velocity is proportional
to the electric field strength, and the proportionality constant is defined as the mobility.
Hence a higher mobility material is likely to have higher frequency response, because
carriers take less time to travel through the device. When the fields are sufficiently large,
nonlinearities in the mobility and saturation in the drift velocity are observed. In fact, the
scattering of the carriers with the lattice, the impurities, and the surface is more active
for higher fields, and the charges lose the energy gained by the electric field.

Now we want to prove that our Extended Hydrodynamic model is able to predict such
behaviours. We shall assume that the wire is surrounded by an oxide which gives rise to
an infinitely deep potential barrier. In such a case, the following analytical relations for
the bottom energies and envelope functions can be used [1]

εα =
�2π2

2m∗

(

n2

L2
x

+
m2

L2
y

)

, χα =

√

2

Lx

sin

(

nπ

Lx

x

)

√

2

Ly

sin

(

mπ

Ly

y

)

n,m ∈ N. (30)

To obtain the drift velocity and the mobility, we have performed a numerical integration
of our hydrodynamic model in the stationary homogeneous case with a constant electric
field along the z direction. In this case the unknowns (ρα, V α,W α, Sα) depend on the
time only. The initial data are the equilibrium values, obtained with a global maxwellian
with lattice temperature T0 (300 K), i.e.

V α(0) = 0 ,W α(0) =
1

2
kBT0 , Sα(0) = 0 (31)

ρα(0) = LxLyND

exp
(

− εα

kBT0

)

∑

α exp
(

− εα

kBT0

) , (32)

where ND is the number of donor impurities. The average drift velocity is defined as

�V � =

∑

α ραV α

∑

α ρα
. (33)

In the figure 1 we plot the subband velocities V α (α =1,..,4) as well as the average drift
velocity versus the simulation time, for an electric field of 1000 V/cm, with Lx = Ly = 10
nm. The stationary regime is reached in a few picoseconds, and the typical phenomenon
of saturation is qualitatively and quantitatively well described.
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Figure 1: The subband drift velocities V
α and the average drift velocity (33) versus the simulation time,

for an electric field of 1000 V/cm, with Lx = Ly = 10 nm.

In the figure 2 we plot the average drift velocity, obtained in the stationary regime,
versus the electric field from which we can evaluate the saturation velocity vs = 6.7 106

cm/sec.
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Figure 2: The average drift velocity (33), obtained in the stationary regime, versus the electric field with
Lx = Ly = 10 nm.

The average mobility is

µ =

∑

α ραµα

∑

α ρα
, µα =

V α

Ez

(34)

where µα is the subband mobility. In the figure 3 we plot the average mobility as function
of the electric field. We notice for low fields (≤ 1000 V/cm) the mobility is constant
(i.e. µ0 = 406 cm2 V/sec) whereas, for high fields, the mobility decreases because the
scattering processes become more active. In the latter figure for comparison we have also
reported the mobility given by the Caughey-Thomas formula [23]

µC = µ0

[

1 +

(

µ0Ez

vs

)2
]

−
1

2

. (35)

Similar results have been obtained using MC simulations [4], but with more expensive
computational times.
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Figure 3: The average mobility (34)1 (circles) versus the electric field with Lx = Ly = 10 nm, and the
mobility evaluated using the Caughey-Thomas formula (diamonds).

5 Conclusions

An extended hydrodynamic model for SiNWs has been formulated with the use of the
maximum entropy principle, where the transport coefficients are completely determined
without any fitting procedure. Using this model we have evaluated the electron mobility
(low and high-field), which is in agreement with MC simulation results. However, our
model must be improved by including other relevant scattering mechanisms such as scat-
tering with impurities, surface roughness, acoustic confined phonons. Simulation of real
device as well as the study of thermoelectric effects according to the guideline in [24]-[28]
are under investigation, and they will be published in the next future.

Acknowledgment

We acknowledge the support of the Università degli Studi di Catania, MIUR PRIN 2009
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