96 research outputs found

    Animal models of compulsive eating behavior

    Get PDF
    In industrialized nations, overeating is a significant problem leading to overweight, obesity, and a host of related disorders; the increase in these disorders has prompted a significant amount of research aimed at understanding their etiology. Eating disorders are multifactorial conditions involving genetic, metabolic, environmental, and behavioral factors. Considering that compulsive eating in the face of adverse consequences characterizes some eating disorders, similar to the way in which compulsive drug intake characterizes drug-addiction, it might be considered an addiction in its own right. Moreover, numerous review articles have recently drawn a connection between the neural circuits activated in the seeking/intake of palatable food and drugs of abuse. Based on this observation, “food addiction” has emerged as an area of intense scientific research and accumulating evidence suggests it is possible to model some aspects of food addiction in animals. The development of well-characterized animal models would advance our understanding of the etiologic neural factors involved in eating disorders, such as compulsive overeating, and it would permit to propose targeted pharmacological therapies. However, to date, little evidence has been reported of continued food seeking and intake despite its harmful consequences in rats and mice

    Long ncRNA Landscape in the Ileum of Treatment-Naive Early-Onset Crohn Disease.

    Get PDF
    Long noncoding RNAs (lncRNA) are key regulators of gene transcription and many show tissue-specific expression. We previously defined a novel inflammatory and metabolic ileal gene signature in treatment-naive pediatric Crohn disease (CD). We now extend our analyses to include potential regulatory lncRNA.Using RNAseq, we systematically profiled lncRNAs and protein-coding gene expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RNA in situ hybridization was used to validate expression. Real-time polymerase chain reaction was used to test lncRNA regulation by IL-1β in Caco-2 enterocytes.We characterize widespread dysregulation of 459 lncRNAs in the ileum of CD patients. Using only the lncRNA in discovery and independent validation cohorts showed patient classification as accurate as the protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types 1showed that the upregulated LINC01272 is associated with a myeloid pro-inflammatory signature, whereas the downregulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We confirmed tissue-specific expression in biopsies using in situ hybridization, and validated regulation of prioritized lncRNA upon IL-1β exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury.We systematically define differentially expressed lncRNA in the ileum of newly diagnosed pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNAs, after mechanistic exploration, may serve as potential new tissue-specific targets for RNA-based interventions

    Silver sulfadiazine eradicates antibiotic-tolerant Staphylococcus aureus and Pseudomonas aeruginosa biofilms in patients with infected diabetic foot ulcers

    Get PDF
    Infections are among the most frequent and challenging events in diabetic foot ulcers (DFUs). Pathogenic bacteria growing in biofilms within host tissue are highly tolerant to environmental and chemical agents, including antibiotics. The present study was aimed at assessing the use of silver sulfadiazine (SSD) for wound healing and infection control in 16 patients with DFUs harboring biofilm-growing Staphylococcus aureus and Pseudomonas aeruginosa. All patients received a treatment based on a dressing protocol including disinfection, cleansing, application of SSD, and application of nonadherent gauze, followed by sterile gauze and tibio-breech bandage, in preparation for toilet surgery after 30 days of treatment. Clinical parameters were analyzed by the T.I.M.E. classification system. In addition, the activity of SSD against biofilm-growing S. aureus and P. aeruginosa isolates was assessed in vitro. A total of 16 patients with S. aureus and P. aeruginosa infected DFUs were included in the study. Clinical data showed a statistically significant (p < 0.002) improvement of patients’ DFUs after 30 days of treatment with SSD with significant amelioration of all the parameters analyzed. Notably, after 30 days of treatment, resolution of infection was observed in all DFUs. In vitro analysis showed that both S. aureus and P. aeruginosa isolates developed complex and highly structured biofilms. Antibiotic susceptibility profiles indicated that biofilm cultures were significantly (p ≤ 0.002) more tolerant to all tested antimicrobials than their planktonic counterparts. However, SSD was found to be effective against fully developed biofilms of both S. aureus and P. aeruginosa at concentrations below those normally used in clinical preparations (10 mg/mL). These results strongly suggest that the topical administration of SSD may represent an effective alternative to conventional antibiotics for the successful treatment of DFUs infected by biofilm-growing S. aureus and P. aeruginosa

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    New understandings of the genetic basis of isolated idiopathic central hypogonadism

    Get PDF
    Idiopathic hypogonadotropic hypogonadism is a rare disease that is characterized by delayed/absent puberty and/or infertility due to an insufficient stimulation of an otherwise normal pituitary-gonadal axis by gonadotrophin-releasing hormone (GnRH) action. Because reduced or normal luteinizing hormone (LH)/follicle-stimulating hormone (FSH) levels may be observed in the affected patients, the term idiopathic central hypogonadism (ICH) appears to be more appropriate. This disease should be distinguished from central hypogonadism that is combined with other pituitary deficiencies. Isolated ICH has a complex pathogenesis and is fivefold more prevalent in males. ICH frequently appears in a sporadic form, but several familial cases have also been reported. This finding, in conjunction with the description of numerous pathogenetic gene variants and the generation of several knockout models, supports the existence of a strong genetic component. ICH may be associated with several morphogenetic abnormalities, which include osmic defects that, with ICH, constitute the cardinal manifestations of Kallmann syndrome (KS). KS accounts for approximately 40% of the total ICH cases and has been generally considered to be a distinct subgroup. However, the description of several pedigrees, which include relatives who are affected either with isolated osmic defects, KS, or normo-osmic ICH (nICH), justifies the emerging idea that ICH is a complex genetic disease that is characterized by variable expressivity and penetrance. In this context, either multiple gene variants or environmental factors and epigenetic modifications may contribute to the variable disease manifestations. We review the genetic mechanisms that are presently known to be involved in ICH pathogenesis and provide a clinical overview of the 227 cases that have been collected by the collaborating centres of the Italian ICH Network

    Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer

    Get PDF
    Background:Breast cancer anti-oestrogen resistance 4 (BCAR4) was identified in a search for genes involved in anti-oestrogen resistance in breast cancer. We explored whether BCAR4 is predictive for tamoxifen resistance and prognostic for tumour aggressiveness, and studied its function.Methods:BCAR4 mRNA levels were measured in primary breast tumours, and evaluated for association with progression-free survival (PFS) and clinical benefit in patients with oestrogen receptor (ERα)-positive tumours receiving tamoxifen as first-line monotherapy for advanced disease. In a separate cohort of patients with lymph node-negative, ERα-positive cancer, and not receiving systemic adjuvant therapy, BCAR4 levels were evaluated for association with distant metastasis-free survival (MFS). The function of BCAR4 was studied with immunoblotting and RNA interference in a cell model.Results:Multivariate analyses established high BCAR4 mRNA levels as an independent predictive factor for poor PFS after start of tamoxifen therapy for recurrent disease. High BCAR4 mRNA levels were associated with poor MFS and overall survival, reflecting tumour aggressiveness. In BCAR4-expressing cells, phosphorylation of v-erb-b2 erythroblastic leukaemia viral oncogene homolog (ERBB)2, ERBB3, and their downstream mediators extracellular signal-regulated kinase 1/2 and v-akt murine thymoma viral oncogene homolog (AKT) 1/2, was increased. Selective knockdown of ERBB2 or ERBB3 inhibited proliferation, confirming their role in BCAR4-induced tamoxifen resistance.Conclusion:BCAR4 may have clinical relevance for tumour aggressiveness and tamoxifen resistance. Our cell model suggests that BCAR4-positive breast tumours are driven by ERBB2/ERBB3 signalling. Patients with such tumours may benefit from ERBB-targeted therapy

    Food seeking in spite of harmful consequences

    No full text
    In industrialized nations, overeating is a significant problem leading to overweight, obesity, and a host of related disorders; the increase in these disorders has prompted a significant amount of research aimed at understanding their etiology. Eating disorders are multifactorial conditions involving genetic, metabolic, environmental, and behavioral factors. Considering that compulsive eating in the face of adverse consequences characterizes some eating disorders, similar to the way in which compulsive drug intake characterizes drug-addiction, it might be considered an addiction in its own right. Moreover, numerous review articles have drawn a connection between the neural circuits activated in the seeking/intake of palatable food and drugs of abuse. Based on this observation, “food addiction” has emerged as an area of intense scientific research and accumulating evidence suggests it is possible to model some aspects of food addiction in animals. The development of well-characterized animal models would advance our understanding of the etiologic neural factors involved in eating disorders, such as compulsive overeating, and it would permit to propose targeted pharmacological therapies

    Un modello animale di "Food Addiction": ruolo del sistema catecolaminergico cerebrale

    No full text
    Numerose evidenze sperimentali indicano la possibilità di modellare la "food additino" negli animali. Una caratteristica essenziale della dipendenza da droghe è l'uso compulsivo di droghe a dispetto delle possibili conseguenze negative. L'assunzione compulsiva è evidente anche in alcuni disturbi del comportamento alimentare, come il "binge-eating", la bulimia nervosa e l'obesità. Consumare larghe quantità di cibo appetibile può indicare un'elevata motivazione per il cibo. Comunque, consumare grandi quantità di cibo nonostante le possibili conseguenze negative, per esempio tollerare punizioni per ottenerlo, rappresenta una forte evidenza di una motivazione patologica per il cibo. Modelli animali che hanno riprodotto questo comportamento compulsivo indicano che il comportamento adattivo di ricerca/assunzione di cibo può essere trasformato in comportamenti maladattati sotto specifiche manipolazioni sperimentali. Inoltre, numerosi lavori indicano una parziale sovrapposizione tra i circuiti neurali attivati dalle sostanze d'abuso e quelli coinvolti in alcuni disturbi del comportamento alimentare. Usando due ceppi inbred di topo, C57BL/6 e DBA/2 noi mostriamo che l'interazione tra accesso esteso alla cioccolata ed esposizione a stress cronico è in grado di trasformare il normale comportamento di ricerca di cibo in assunzione compulsiva in topi del ceppo DBA/2. Inoltre, i nostri dati indicano che alterazioni della normale trasmissione dopaminergica e noradrenergica in corteccia prefrontale e nucleus accumbens (due aree cerebrali fortemente implicate nei comportamenti motivati) sono alla base del comportamento alimentare maladattato caratterizzato da una eccessiva ricerca e assunzione di cibo appetibile
    • …
    corecore