4,377 research outputs found

    New orbital ephemerides for the dipping source 4U 1323-619: constraining the distance to the source

    Get PDF
    4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quadratic function. We locate 4U 1323-619 within a circular area centred at RA (J2000)= 201.6543\degree and DEC (J2000)= -62.1358\degree with an associated error of 0.0002\degree, and confirm the detection of the IR counterpart already discussed in literature. We estimate an orbital period of P=2.9419156(6) hrs compatible with the estimations that are present in the literature, but with an accuracy ten times higher. We also obtain a constraint on the orbital period derivative for the first time, estimating P˙=(8±13)×10−12\dot{P}=(8\pm 13)\times 10^{-12} s/s. Assuming that the companion star is in thermal equilibrium in the lower main sequence, and is a neutron star of 1.4 M⊙_{\odot}, we infer a mass of 0.28±\pm0.03 M⊙_{\odot} for the companion star. Assuming a distance of 10 kpc, we obtained a luminosity of (4.3±\pm0.5)×1036\times 10^{36} erg s−1^{-1}, which is not in agreement with what is predicted by the theory of secular evolution. Using a 3D extinction map of the Ks_{s} radiation in our Galaxy, we obtain a distance of 4.2−0.7+0.8^{+0.8}_{-0.7} kpc at 68\% confidence level. (Abridged)Comment: 10 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts.

    Get PDF
    The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR.The amount of proteins characteristic for cardiac cells (alpha-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively) inclines toward an increase in both alpha-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart

    Study of the reflection spectrum of the LMXB 4U 1702-429

    Get PDF
    The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( ∼1037\sim10^{37} erg s−1^{-1}) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60∘^{\circ}.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A broad emission line at 6.7 keV and two absorption edges at 0.87 and 8.82 keV were detected. We found that a self-consistent reflection model fits the 0.3-60 keV spectrum well. The broadband continuum is composed of an emission component originating from the inner region of the accretion disc, a Comptonised direct emission coming from a corona with an electron temperature of 2.63±0.062.63 \pm 0.06 keV and an optical depth τ=13.6±0.2\tau=13.6 \pm 0.2, and, finally, a reflection component. The best-fit indicates that the broad emission line and the absorption edge at 8.82 keV, both associated with the presence of \ion{Fe}{xxv} ions, are produced by reflection in the region above the disc with a ionisation parameter of Log(ξ)≃2.7Log(\xi) \simeq 2.7. We have inferred that the inner radius, where the broad emission line originates, is 64−15+5264^{+52}_{-15} km, and the inner radius of the accretion disc is 39−8+639^{+6}_{-8} km. (Abridged)Comment: 9 pages, 9 figures, accepted for publication by A&

    The Mediational Role of Desire for Cultural Tightness on Concern With COVID-19 and Perceived Self-Control

    Get PDF
    When ecological threats are more severe or prevalent, societies are more likely to tighten their social norms and punishments. Moreover, when people follow clear and tight rules, they are more prone to regulate their behavior (i.e., self-control) in order to avoid punishment. Therefore, we examined the mediating role of people’s endorsement of cultural tightness (i.e., support and desire) on the relationship between concern with COVID-19 threat and personal self-control. Our hypothesis was tested through a mediation model in two studies with a sample of (N=315, 77.1% females, Mage=23.71) university students (Study 1) and with a heterogeneous sample of (N=239, 65.7% females, Mage=36.55) participants (Study 2). Empirical support for the proposed model was found in both studies. Implications of this research will be discussed. The main implication is related to the possibility that people’s desire for strong norms to cope with the COVID-19 threat could promote greater self-regulated preventive behavior in order to protect their health

    A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

    Get PDF
    We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at ∼0.7\sim 0.7 keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering feature (CRSF) produced close to the neutron star surface and derive the magnetic field strength at the surface of the neutron star, (8.8±0.3)×1010(8.8 \pm 0.3) \times 10^{10} G for a radius of 10 km. We derive the pulse period in the EPIC-pn data to be 0.5928850(6) s and estimate that the spin period derivative of X1822-371 is (−2.55±0.03)×10−12(-2.55 \pm 0.03) \times 10^{-12} s/s using all available pulse period measurements. Assuming that the intrinsic luminosity of X1822-371is at the Eddington limit and using the values of spin period and spin period derivative of the source, we constrain the neutron star and companion star masses. We find the neutron star and the companion star masses to be 1.69±0.131.69 \pm 0.13 M⊙_{\odot} and 0.46±0.020.46 \pm 0.02 M⊙_{\odot}, respectively, for a neutron star radius of 10 km.In a self-consistent scenario in which X1822-371 is spinning-up and accretes at the Eddington limit, we estimate that the magnetic field of the neutron star is (8.8±0.3)×1010(8.8 \pm 0.3) \times 10^{10} G for a neutron star radius of 10 km. If our interpretation is correct, the Gaussian absorption feature near 0.7 keV is the very first detection of a CRSF below 1 keV in a LMXB. (abridged)Comment: 14 pages, 12 figures, accepted for publication in A&

    Signature of the presence of a third body orbiting around XB 1916-053

    Get PDF
    The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M⊙_{\odot}). The orbital period derivative of the source was estimated to be 1.5(3)×10−111.5(3) \times 10^{-11} s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadratic term or a different scenario has to be considered. We obtained 27 delays associated with the dip arrival times from data covering 37 years and used different models to fit the time delays with respect to a constant period model.We find that the quadratic form alone does not fit the data. The data are well fitted using a sinusoidal term plus a quadratic function or, alternatively, with a series of sinusoidal terms that can be associated with a modulation of the dip arrival times due to the presence of a third body that has an elliptical orbit. We infer that for a conservative mass transfer scenario the modulation of the delays can be explained by invoking the presence of a third body with mass between 0.10-0.14 M⊙_{\odot}, orbital period around the X-ray binary system of close to 51 yr and an eccentricity of 0.28±0.150.28 \pm 0.15. In a non-conservative mass transfer scenario we estimate that the fraction of matter yielded by the degenerate companion star and accreted onto the neutron star is β=0.08\beta = 0.08, the neutron star mass is ≥2.2\ge 2.2 M⊙_{\odot}, and the companion star mass is 0.028 M⊙_{\odot}. (Abridged)Comment: 13 pages, 9 figures. Accepted for publication in A&
    • …
    corecore