393 research outputs found

    Intravital Imaging Reveals Distinct Dynamics for Natural Killer and CD8+ T Cells during Tumor Regression

    Get PDF
    SummaryRecognition of NKG2D ligands by natural killer (NK) cells plays an important role during antitumoral responses. To address how NKG2D engagement affects intratumoral NK cell dynamics, we performed intravital microscopy in a Rae-1β-expressing solid tumor. This NKG2D ligand drove NK cell accumulation, activation, and motility within the tumor. NK cells established mainly dynamic contacts with their targets during tumor regression. In sharp contrast, cytotoxic T lymphocytes (CTLs) formed stable contacts in tumors expressing their cognate antigen. Similar behaviors were observed during effector functions in lymph nodes. In vitro, contacts between NK cells and their targets were cytotoxic but did not elicit sustained calcium influx nor adhesion, whereas CTL contact stability was critically dependent on extracellular calcium entry. Altogether, our results offer mechanistic insight into how NK cells and CTLs can exert cytotoxic activity with remarkably different contact dynamics

    Interleukin-7, a New Cytokine Targeting the Mouse Hypothalamic Arcuate Nucleus: Role in Body Weight and Food Intake Regulation

    Get PDF
    Body weight is controlled through peripheral (white adipose tissue) and central (mainly hypothalamus) mechanisms. We have recently obtained evidence that overexpression of interleukin (IL)-7, a critical cytokine involved in lymphopoiesis, can protect against the development of diet-induced obesity in mice. Here we assessed whether IL-7 mediated its effects by modulating hypothalamic function. Acute subcutaneous injection of IL-7 prevented monosodium glutamate-induced obesity, this being correlated with partial protection against cell death in the hypothalamic arcuate nucleus (ARC). Moreover, we showed that IL-7 activated hypothalamic areas involved in regulation of feeding behavior, as indicated by induction of the activation marker c-Fos in neural cells located in the ventromedial part of the ARC and by inhibition of food intake after fasting. Both chains of the IL-7 receptor (IL-7Rα and γc) were expressed in the ARC and IL-7 injection induced STAT-3 phosphorylation in this area. Finally, we established that IL-7 modulated the expression of neuropeptides that tune food intake, with a stimulatory effect on the expression of pro-opiomelanocortin and an inhibitory effect on agouti-related peptide expression in accordance with IL-7 promoting anorectic effects. These results suggest that the immunomodulatory cytokine IL-7 plays an important and unappreciated role in hypothalamic body weight regulation

    Are Major Histocompatibility Complex Molecules Involved in the Survival of Naive CD4+ T Cells?

    Get PDF
    The exact role of major histocompatibility complex (MHC) molecules in the peripheral survival of naive T cells is controversial, as some studies have suggested that they are critically required whereas others have suggested that they are not. Here we controlled for some of the features that differed among the earlier studies, and analyzed both the survival and expansion of naive CD4+ T cells transferred into MHC syngeneic, allogeneic, or MHC negative environments. We found that naive T cells transferred into MHC negative or allogeneic environments often fail to survive because of rejection and/or competition by natural killer (NK) cells, rather than failure to recognize a particular MHC allele. In the absence of NK cells, naive CD4+ T cells survived equally well regardless of the MHC type of the host. There was, however, an MHC requirement for extensive space-induced “homeostatic” expansion. Although the first few divisions occurred in the absence of MHC molecules, the cells did not continue to divide or transit to a CD44hi phenotype. Surprisingly, this MHC requirement could be satisfied by alleles other than the restricting haplotype. Therefore, space-induced expansion and survival are two different phenomena displaying different MHC requirements. Memory CD4+ T cells, whose survival and expansion showed no requirements for MHC molecules at all, dampened the space-induced expansion of naive cells, showing that the two populations are not independent in their requirements for peripheral niches

    CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells

    Get PDF
    Interferon-producing killer dendritic cells (IKDCs) are a recently described subset of CD11cloB220+ cells that share phenotypic and functional properties of DCs and natural killer (NK) cells (Chan, C.W., E. Crafton, H.N. Fan, J. Flook, K. Yoshimura, M. Skarica, D. Brockstedt, T.W. Dubensky, M.F. Stins, L.L. Lanier, et al. 2006. Nat. Med. 12:207–213; Taieb, J., N. Chaput, C. Menard, L. Apetoh, E. Ullrich, M. Bonmort, M. Pequignot, N. Casares, M. Terme, C. Flament, et al. 2006. Nat. Med. 12:214–219). IKDC development appears unusual in that cytokines using the interleukin (IL)-2 receptor β (IL-2Rβ) chain but not those using the common γ chain (γc) are necessary for their generation. By directly comparing Rag2−/−γc−/y, Rag2−/−IL-2Rβ−/−, Rag2−/−IL-15−/−, and Rag2−/−IL-2−/− mice, we demonstrate that IKDC development parallels NK cell development in its strict IL-15 dependence. Moreover, IKDCs uniformly express NK-specific Ncr-1 transcripts (encoding NKp46), whereas NKp46+ cells are absent in Ncr1gfp/+γc−/y mice. Distinguishing features of IKDCs (CD11cloB220+MHC-II+) were carefully examined on developing NK cells in the bone marrow and on peripheral NK cells. As B220 expression was heterogeneous, defining B220lo versus B220hi NK1.1+ NK cells could be considered as arbitrary, and few phenotypic differences were noted between NK1.1+ NK cells bearing different levels of B220. CD11c expression did not correlate with B220 or major histocompatibility complex (MHC) class II (MHC-II) expression, and most MHC-II+ NK1.1+ cells did not express B220 and were thus not IKDCs. Finally, CD11c, MHC-II, and B220 levels were up-regulated on NK1.1+ cells upon activation in vitro or in vivo in a proliferation-dependent fashion. Our data suggest that the majority of CD11cloB220+ “IKDC-like” cells represent activated NK cells

    Characterization of T Cell Differentiation in the Murine Gut

    Get PDF
    Gut intraepithelial CD8 T lymphocytes (T-IEL) are distinct from thymus-derived cells and are thought to derive locally from cryptopatch (CP) precursors. The intermediate stages of differentiation between CP and mature T-IEL were not identified, and the local differentiation process was not characterized. We identified and characterized six phenotypically distinct lineage-negative populations in the CP and the gut epithelium: (a) we determined the kinetics of their generation from bone marrow precursors; (b) we quantified CD3-ε, recombination activating gene (Rag)-1, and pre-Tα mRNAs expression at single cell level; (c) we characterized TCR-β, -γ, and -α locus rearrangements; and (d) we studied the impact of different mutations on the local differentiation. These data allowed us to establish a sequence of T cell precursor differentiation in the gut. We also observed that the gut differentiation varied from that of the thymus by a very low frequency of pre-Tα chain mRNA expression, a different kinetics of Rag-1 mRNA expression, and a much higher impact of CD3 ε/δ and pre-Tα deficiencies. Finally, only 3% of CP cells were clearly involved in T cell differentiation, suggesting that these structures may have additional physiological roles in the gut

    Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site

    Get PDF
    Environmental influences have profound yet reversible effects on the behavior of resident cells. Earlier data have indicated that the amount of muscle formed from implanted myogenic cells is greatly augmented by prior irradiation (18 Gy) of the host mouse muscle. Here we confirm this phenomenon, showing that it varies between host mouse strains. However, it is unclear whether it is due to secretion of proliferative factors or reduction of antiproliferative agents. To investigate this further, we have exploited the observation that the immortal myogenic C2 C12 cell line forms tumors far more rapidly in irradiated than in nonirradiated host muscle. We show that the effect of preirradiation on tumor formation is persistent and dose dependent. However, C2 C12 cells are not irreversibly compelled to form undifferentiated tumor cells by the irradiated muscle environment and are still capable of forming large amounts of muscle when reimplanted into a nonirradiated muscle. In a clonal analysis of this effect, we discovered that C2 C12 cells have a bimodal propensity to form tumors; some clones form no tumors even after extensive periods in irradiated graft sites, whereas others rapidly form extensive tumors. This illustrates the subtle interplay between the phenotype of implanted cells and the factors in the muscle environment
    corecore