9 research outputs found

    Role of serial cardiac 18F-FDG PET-MRI in Anderson-Fabry disease: a pilot study

    Get PDF
    Aim: We investigated the value of serial cardiac 18F-FDG PET-MRI in Anderson–Fabry disease (AFD) and the potential relationship of imaging results with FASTEX score. Methods and results: Thirteen AFD patients underwent cardiac 18F-FDG PET-MRI at baseline and follow-up. Coefficient of variation (COV) of FDG uptake and FASTEX score were assessed. At baseline, 9 patients were enzyme replacement therapy (ERT) naïve and 4 patients were under treatment. Two patients presented a FASTEX score of 0 indicating stable disease and did not show any imaging abnormality at baseline and follow-up PET-MRI. Eleven patients had a FASTEX score > 20% indicating disease worsening. Four of these patients without late gadolinium enhancement (LGE) and with normal COV at baseline and follow-up had a FASTEX score of 35%. Three patients without LGE and with abnormal COV at baseline and follow-up had a FASTEX score ranging from 30 to 70%. Three patients with LGE and abnormal COV at baseline and follow-up had a FASTEX score between 35 and 75%. Finally, one patient with LGE and normal COV had a FASTEX score of 100%. Of the 12 patients on ERT at follow-up, FASTEX score was significantly higher in those 4 showing irreversible cardiac injury at baseline compared to 8 with negative LGE (66 ± 24 vs. 32 ± 21, p = 0.03). Conclusion: 18F-FDG PET-MRI may be effective to monitor cardiac involvement in AFD

    Fatigue as hallmark of Fabry disease: role of bioenergetic alterations

    Get PDF
    Fabry disease (FD) is a lysosomal storage disorder due to the impaired activity of the α-galactosidase A (GLA) enzyme which induces Gb3 deposition and multiorgan dysfunction. Exercise intolerance and fatigue are frequent and early findings in FD patients, representing a self-standing clinical phenotype with a significant impact on the patient's quality of life. Several determinants can trigger fatigability in Fabry patients, including psychological factors, cardiopulmonary dysfunctions, and primary alterations of skeletal muscle. The “metabolic hypothesis” to explain skeletal muscle symptoms and fatigability in Fabry patients is growing acknowledged. In this report, we will focus on the primary alterations of the motor system emphasizing the role of skeletal muscle metabolic disarrangement in determining the altered exercise tolerance in Fabry patients. We will discuss the most recent findings about the metabolic profile associated with Fabry disease offering new insights for diagnosis, management, and therapy

    Ultra-Deep DNA Methylation Analysis of X-Linked Genes: GLA and AR as Model Genes

    No full text
    Recessive X-linked disorders may occasionally evolve in clinical manifestations of variable severity also in female carriers. For some of such diseases, the frequency of the symptoms’ appearance during women’s life may be particularly relevant. This phenomenon has been largely attributed to the potential skewness of the X-inactivation process leading to variable phenotypes. Nonetheless, in many cases, no correlation with X-inactivation unbalance was demonstrated. However, methods for analyzing skewness have been mainly limited to Human Androgen Receptor methylation analysis (HUMARA). Recently, the X-inactivation process has been largely revisited, highlighting the heterogeneity existing among loci in the epigenetic state within inactive and, possibly, active X-chromosomes. We reasoned that gene-specific and ultra-deep DNA methylation analyses could greatly help to unravel details of the X-inactivation process and the roles of specific X genes inactivation in disease manifestations. We recently provided evidence that studying DNA methylation at specific autosomic loci at a single-molecule resolution (epiallele distribution analysis) allows one to analyze cell-to-cell methylation differences in a given cell population. We here apply the epiallele analysis at two X-linked loci to investigate whether females show allele-specific epiallelic patterns. Due to the high potential of this approach, the method allows us to obtain clearly distinct allele-specific epiallele profiles

    Optical Coherence Tomography Angiography Findings in Fabry Disease

    No full text
    Fabry disease (FD) is a X-linked recessive lysosomal storage disorder characterized by altered biodegradation of glycosphingolipids. It is a multisystem pathology, also involving ophthalmological systems that show modifications of the vessel wall due to glycosphingolipid deposits. Optical coherence tomography angiography (OCT-A) allows for an objective analysis of retinal microvasculature alterations, evaluating retinal vessel density in macular region

    The central vein sign helps in differentiating multiple sclerosis from its mimickers: lessons from Fabry disease

    No full text
    Although the use of specific MRI criteria has significantly increased the diagnostic accuracy of multiple sclerosis (MS), reaching a correct neuroradiological diagnosis remains a challenging task, and therefore the search for new imaging biomarkers is crucial. This study aims to evaluate the incidence of one of the emerging neuroradiological signs highly suggestive of MS, the central vein sign (CVS), using data from Fabry disease (FD) patients as an index of microvascular disorder that could mimic MS

    Epigenetic alterations in glioblastomas: Diagnostic, prognostic and therapeutic relevance

    No full text
    Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients

    Experimental evidence and clinical implications of Warburg effect in the skeletal muscle of Fabry disease

    Get PDF
    : Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD
    corecore