126 research outputs found

    Hubble Space Telescope survey of Magellanic Cloud star clusters: photometry and astrometry of 113 clusters and early results

    Get PDF
    In the past few years, we have undertaken an extensive investigation of star clusters and their stellar populations in the Large and Small Magellanic Clouds (LMC and SMC) based on archival images collected with the Hubble Space Telescope. We present photometry and astrometry of stars in 101 fields observed with the Wide Field Channel of the Advanced Camera for Surveys and the Ultraviolet and Visual Channel and the Near-Infrared Channel of Wide Field Camera 3. These fields comprise 113 star clusters. We provide differential-reddening maps for those clusters with significant reddening variations across the field of view. We illustrate various scientific outcomes that arise from the early inspection of the photometric catalogs. In particular, we provide new insights into the extended main-sequence turnoff (eMSTO) phenomenon: (i) We detected eMSTOs in two clusters, KMHK 361 and NGC 265, which had no previous evidence of multiple populations. This finding corroborates the conclusion that the eMSTO is a widespread phenomenon among clusters younger than ~2 Gyr. (ii) The homogeneous color-magnitude diagrams (CMDs) of 19 LMC clusters reveal that the distribution of stars along the eMSTO depends on cluster age. (iii) We discovered a new feature along the eMSTO of NGC 1783, which consists of a distinct group of stars on the red side of the eMSTO in CMDs composed of UV filters. Furthermore, we derived the proper motions of stars in the fields of view of clusters with multi-epoch images. Proper motions allowed us to separate the bulk of bright field stars from cluster members and investigate the internal kinematics of stellar populations in various LMC and SMC fields. As an example, we analyze the field around NGC 346 to disentangle the motions of its stellar populations, including NGC 364 and BS 90, young and pre-main-sequence stars in the star-forming region associated with NGC 346, and young and old field stellar populations of the SMC. Based on these results and the fields around five additional clusters, we find that young SMC stars exhibit elongated proper-motion distributions that point toward the LMC, thus providing new evidence for a kinematic connection between the LMC and SMC.We thank the anonymous referee for various suggestions that improved the quality of the manuscript. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research innovation programme (Grant Agreement ERC-StG 2016, No. 716082 ’GALFOR’, PI: Milone, http://progetti.dfa.unipd. it/GALFOR) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 101034319 and from the European Union – NextGenerationEU, beneficiary: Ziliotto. A.P.M., M.T., and E.D. acknowledge support from MIUR through the FARE project R164RM93XW SEMPLICE (PI: Milone). A.P.M. and M.T. have been supported by MIUR under PRIN program 2017Z2HSMF (PI: Bedin). This research was supported in part by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) through project number CE170100013. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.Peer ReviewedPostprint (published version

    Influenza vaccine uptake among community-dwelling Italian elderly: results from a large cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flu vaccination significantly reduces the risk of serious complications like hospitalization and death among community-dwelling older people, therefore vaccination programmes targeting this population group represent a common policy in developed Countries. Among the determinants of vaccine uptake in older age, a growing literature suggests that social relations can play a major role.</p> <p>Methods</p> <p>Drawing on the socio-behavioral model of Andersen-Newman - which distinguishes predictors of health care use in predisposing characteristics, enabling resources and need factors - we analyzed through multilevel regressions the determinants of influenza immunization in a sample of 25,183 elderly reached by a nationally representative Italian survey.</p> <p>Results</p> <p>Being over 85-year old (OR = 1.99; 95% CI 1.77 - 2.21) and suffering from a severe chronic disease (OR = 2.06; 95% CI 1.90 - 2.24) are the strongest determinants of vaccine uptake. Being unmarried (OR = 0.81; 95% CI 0.74 - 0.87) and living in larger households (OR = 0.83; 95% CI 0.74 - 0.87) are risk factors for lower immunization rates. Conversely, relying on neighbors' support (OR = 1.09; 95% CI 1.02 - 1.16) or on privately paid home help (OR = 1.19; 95% CI 1.08 - 1.30) is associated with a higher likelihood of vaccine uptake.</p> <p>Conclusions</p> <p>Even after adjusting for socio-demographic characteristics and need factors, social support, measured as the availability of assistance from partners, neighbors and home helpers, significantly increases the odds of influenza vaccine use among older Italians.</p

    Polyglutamine Expansion Mutation Yields a Pathological Epitope Linked to Nucleation of Protein Aggregate: Determinant of Huntington's Disease Onset

    Get PDF
    Polyglutamine (polyQ) expansion mutation causes conformational, neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. These diseases are characterized by the aggregation of misfolded proteins, such as amyloid fibrils, which are toxic to cells. Amyloid fibrils are formed by a nucleated growth polymerization reaction. Unexpectedly, the critical nucleus of polyQ aggregation was found to be a monomer, suggesting that the rate-limiting nucleation process of polyQ aggregation involves the folding of mutated protein monomers. The monoclonal antibody 1C2 selectively recognizes expanded pathogenic and aggregate-prone glutamine repeats in polyQ diseases, including Huntington's disease (HD), as well as binding to polyleucine. We have therefore assayed the in vitro and in vivo aggregation kinetics of these monomeric proteins. We found that the repeat-length-dependent differences in aggregation lag times of variable lengths of polyQ and polyleucine tracts were consistently related to the integration of the length-dependent intensity of anti-1C2 signal on soluble monomers of these proteins. Surprisingly, the correlation between the aggregation lag times of polyQ tracts and the intensity of anti-1C2 signal on soluble monomers of huntingtin precisely reflected the repeat-length dependent age-of-onset of HD patients. These data suggest that the alterations in protein surface structure due to polyQ expansion mutation in soluble monomers of the mutated proteins act as an amyloid-precursor epitope. This, in turn, leads to nucleation, a key process in protein aggregation, thereby determining HD onset. These findings provide new insight into the gain-of-function mechanisms of polyQ diseases, in which polyQ expansion leads to nucleation rather than having toxic effects on the cells

    Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology

    Get PDF
    The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials

    Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes

    Get PDF
    discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology

    Impaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia

    Get PDF
    BACKGROUND: Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We thus investigated signaling pathways involved in antioxidant defense mechanisms. We showed that cultured fibroblasts from patients with Friedreich ataxia exhibited hypersensitivity to oxidative insults because of an impairment in the Nrf2 signaling pathway, which led to faulty induction of antioxidant enzymes. This impairment originated from previously reported actin remodeling by hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE: Thus, the defective machinery for ISP synthesis by causing mitochondrial iron dysmetabolism increases hydrogen peroxide production that accounts for the increased susceptibility to oxidative stress

    Histone deacetylases suppress cgg repeat-induced neurodegeneration via transcriptional silencing in models of Fragile X Tremor Ataxia Syndrome

    Get PDF
    Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 59UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11) suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT) inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.open293

    Limitations in a frataxin knockdown cell model for Friedreich ataxia in a high-throughput drug screen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological high-throughput screening (HTS) represents a powerful strategy for drug discovery in genetic diseases, particularly when the full spectrum of pathological dysfunctions remains unclear, such as in Friedreich ataxia (FRDA). FRDA, the most common recessive ataxia, results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur cluster (ISC) proteins activity, due to a partial loss of frataxin function, a mitochondrial protein proposed to function as an iron-chaperone for ISC biosynthesis. In the absence of measurable catalytic function for frataxin, a cell-based assay is required for HTS assay.</p> <p>Methods</p> <p>Using a targeted ribozyme strategy in murine fibroblasts, we have developed a cellular model with strongly reduced levels of frataxin. We have used this model to screen the Prestwick Chemical Library, a collection of one thousand off-patent drugs, for potential molecules for FRDA.</p> <p>Results</p> <p>The frataxin deficient cell lines exhibit a proliferation defect, associated with an ISC enzyme deficit. Using the growth defect as end-point criteria, we screened the Prestwick Chemical Library. However no molecule presented a significant and reproducible effect on the proliferation rate of frataxin deficient cells. Moreover over numerous passages, the antisense ribozyme fibroblast cell lines revealed an increase in frataxin residual level associated with the normalization of ISC enzyme activities. However, the ribozyme cell lines and FRDA patient cells presented an increase in Mthfd2 transcript, a mitochondrial enzyme that was previously shown to be upregulated at very early stages of the pathogenesis in the cardiac mouse model.</p> <p>Conclusion</p> <p>Although no active hit has been identified, the present study demonstrates the feasibility of using a cell-based approach to HTS for FRDA. Furthermore, it highlights the difficulty in the development of a stable frataxin-deficient cell model, an essential condition for productive HTS in the future.</p

    Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.This study was funded by NIH grant NS073976 to TKH and a John Sealy Grant to PSS

    Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging.

    Get PDF
    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction
    corecore