172 research outputs found

    Finite-Size Effects in Stochastic Models of Population Dynamics: Applications to Biomedicine and Biology

    Get PDF
    Population dynamics constitutes a widespread branch of investigations which finds important applications within the realm of life science. The classical deterministic (macroscopic) approach aims at characterizing the time evolution of families of homologous entities, so to unravel the global mechanisms which drive their dynamics. As opposed to this formulation, a microscopic level of modeling can be invoked which instead focuses on the explicit rules governing the interactions among individuals. A viable tool that enables to bridge the gap between the two approaches is the van Kampen's system size expansion. In this thesis we use this method to show how the finite-size effects accounted by the microscopic level might significantly alter the dynamics of biological phenomena

    Phase equilibria of polydisperse hydrocarbons: moment free energy method analysis

    Full text link
    We analyze the phase equilibria of systems of polydisperse hydrocarbons by means of the recently introduced moment method. Hydrocarbons are modelled with the Soave-Redlick-Kwong and Peng-Robinson equations of states. Numerical results show no particular qualitative difference between the two equations of states. Furthermore, in general the moment method proves to be an excellent method for solving phase equilibria of polydisperse systems, showing excellent agreement with previous results and allowing a great improvement in generality of the numerical scheme and speed of computation.Comment: 12 pages, 2 figure

    The second will be first: competition on directed networks

    Get PDF
    Multiple sinks competition is investigated for a walker diffusing on directed complex networks. The asymmetry of the imposed spatial support makes the system non transitive. As a consequence, it is always possible to identify a suitable location for the second absorbing sink that screens at most the flux of agents directed against the first trap, whose position has been preliminarily assigned. The degree of mutual competition between pairs of nodes is analytically quantified through apt indicators that build on the topological characteristics of the hosting graph. Moreover, the positioning of the second trap can be chosen so as to minimize, at the same time the probability of being in turn shaded by a thirdly added trap. Supervised placing of absorbing traps on a asymmetric disordered and complex graph is hence possible, as follows a robust optimization protocol. This latter is here discussed and successfully tested against synthetic data

    Ginzburg-Landau approximation for self-sustained oscillators weakly coupled on complex directed graphs

    Get PDF
    A normal form approximation for the evolution of a reaction-diffusion system hosted on a directed graph is derived, in the vicinity of a supercritical Hopf bifurcation. Weak diffusive couplings are assumed to hold between adjacent nodes. Under this working assumption, a Complex Ginzburg-Landau equation (CGLE) is obtained, whose coefficients depend on the parameters of the model and the topological characteristics of the underlying network. The CGLE enables one to probe the stability of the synchronous oscillating solution, as displayed by the reaction-diffusion system above Hopf bifurcation. More specifically, conditions can be worked out for the onset of the symmetry breaking instability that eventually destroys the uniform oscillatory state. Numerical tests performed for the Brusselator model confirm the validity of the proposed theoretical scheme. Patterns recorded for the CGLE resemble closely those recovered upon integration of the original Brussellator dynamics

    Multiple scale theory of topology driven pattern on directed networks

    Get PDF
    Dynamical processes on networks are currently being considered in different domains of cross-disciplinary interest. Reaction-diffusion systems hosted on directed graphs are in particular relevant for their widespread applications, from neuroscience, to computer networks and traffic systems. Due to the peculiar spectrum of the discrete Laplacian operator, homogeneous fixed points can turn unstable, on a directed support, because of the topology of the network, a phenomenon which cannot be induced on undirected graphs. A linear analysis can be performed to single out the conditions that underly the instability. The complete characterization of the patterns, which are eventually attained beyond the linear regime of exponential growth, calls instead for a full non linear treatment. By performing a multiple time scale perturbative calculation, we here derive an effective equation for the non linear evolution of the amplitude of the most unstable mode, close to the threshold of criticality. This is a Stuart-Landau equation whose complex coefficients appear to depend on the topological features of the embedding directed graph. The theory proves adequate versus simulations, as confirmed by operating with a paradigmatic reaction-diffusion model

    Noise Processing by MicroRNA-Mediated Circuits: the Incoherent Feed-Forward Loop, Revisited

    Get PDF
    The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs) in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro} and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL), a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements.Comment: 25 pages (Main Text and Supplementary Information), 5 figure

    Noise processing by microRNA-mediated circuits: The Incoherent Feed-Forward Loop, revisited

    Get PDF
    The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs) in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL), a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements

    Hopping in the crowd to unveil network topology

    Get PDF
    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node that can be chosen randomly. The technique is successfully tested against both synthetic and real data, and shown to estimate with great accuracy also the total number of nodes
    • …
    corecore