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Dynamical processes on networks are currently being considered in different domains of cross-disciplinary
interest. Reaction-diffusion systems hosted on directed graphs are in particular relevant for their widespread
applications, from computer networks to traffic systems. Due to the peculiar spectrum of the discrete Laplacian
operator, homogeneous fixed points can turn unstable, on a directed support, because of the topology of the
network, a phenomenon which cannot be induced on undirected graphs. A linear analysis can be performed to
single out the conditions that underly the instability. The complete characterization of the patterns, which are
eventually attained beyond the linear regime of exponential growth, calls instead for a full nonlinear treatment. By
performing a multiple time scale perturbative calculation, we here derive an effective equation for the nonlinear
evolution of the amplitude of the most unstable mode, close to the threshold of criticality. This is a Stuart-Landau
equation the complex coefficients of which appear to depend on the topological features of the embedding
directed graph. The theory proves adequate versus simulations, as confirmed by operating with a paradigmatic
reaction-diffusion model.
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I. INTRODUCTION

Networks are undoubtedly gaining considerable importance
in the modeling of natural and artificial phenomena [1,2]. They
define in fact the natural playground for a large plethora of
problems, that assume a heterogeneous support for the connec-
tions among constituents. In the brain, for instance, neuronal
networks provide the skeleton for the efficient transport of
the electric signal [3]. The crowded world of cells in general
is shaped by veritable routes, the microtubules, that result
in an intricate cobweb of interlinked paths [4]. The flow of
information on the Internet, and its multifaceted applications,
heavily rely on the topology of the underlying, global and
local, network of contacts. Human mobility patterns, with their
consequences for transportation design and epidemic control,
configure, at a plausible level of abstraction, as effective
graphs, linking different spatial locations.

Reactions occur on each node between species that populate
the examined system. Individual actors (molecules, humans,
cars, or even bits of information) can relocate to distant sites,
when exploring the network on which they are physically
confined. This latter process is ruled by diffusion on the
heterogeneous, networklike support, different avenues of
transport being available to the microscopic entities, as dictated
by the adjacency matrix associated to the hosting graph. The
nontrivial interplay between reactions and diffusion can insti-
gate the emergence of spatially extended motifs [5,6], which
reflect the inherent ability of the system to spontaneously
self-organize and consequently perform dedicated tasks. In
general, when space reduces to a regular lattice or a symmetric
graph, the dynamics is uniquely responsible for the onset of
the instability which eventually materializes in the observed
macroscopic and collective patterns. These are, for instance,
the celebrated Turing patterns that, in recent years, have
received much attention also in light of their applicability on
networks [7–9].

In applications, however, networks are not always symmet-
ric, or undirected, as customarily termed. Often a connection

between adjacent nodes imposes a specific direction to the
journey, thus resulting in a so called directed graph.

The map of neural connection is manifestly asymmetric,
because of the neurons’ physiology [10]. In connectome
models in fact the coarse-grained maps of the brain reveal
an asymmetric arrangement of connections at different spatial
scales [11,12]. Cytoskeletal molecular motors move unidi-
rectionally along oriented polymer tracks. The cyberworld
is also characterized by an asymmetric routing of the links
[13]. As traffic is concerned, several routes can be crossed in
one direction only, thus breaking the symmetry between pairs
of nodes. When reaction-diffusion systems are considered on
directed networks, topology does matter. Surprisingly, patterns
can rise on a directed support, even if they are formally
impeded on a regular, continuum or discrete, spatial medium.
The mathematics of this process has been recently investigated
in [14], where the conditions for the instability are obtained
in the framework of a standard linear analysis calculation.
The patterns which manifest as a byproduct of the aforemen-
tioned instability reflect, however, the nonlinearities which are
accommodated for in the model and that are, by definition,
omitted in the linear analysis theory. In other words, the
conditions for the emergence of topology-driven patterns for
a reaction-diffusion system on a directed graph can be singled
out, but the characterization of the subsequent nonlinear stage
of evolution solely relies on numerical methods.

In this paper we aim at filling this gap, by analytically
deriving an effective equation for the evolution of the ampli-
tude of the unstable mode, near the threshold of criticality.
The spatial characteristics of the generated patterns owe to
the spectrum of the Laplacian operator that governs the
diffusion process. The analysis builds on a multiple time
scale treatment originally devised in [15–18], and recently
reconsidered for the rather specific case of a reaction-diffusion
system placed on top of a symmetric network and subject
to weak couplings [19]. At variance, we here focus on the
case of a directed graph and assume arbitrary large diffusion
coefficients. This latter condition results in a complexification
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of the analytical procedure: the linear calculation is carried
out in a N dimensional space, N being the number of
nodes in the graphs. The extension to nonlinear orders
proves consequently more demanding. A Stuart-Landau (SL)
equation is eventually derived for the amplitude of the unstable
mode. Unprecedently, the coefficients of the SL equation
reflect the topology of the network, the factual drive to the
instability. Simulations performed for the Brusselator model,
a reaction-diffusion system of pedagogical relevance, confirm
the predictive adequacy of the analytical solution, obtained in
the framework of the effective SL scenario.

II. MODEL AND RESULTS

Consider a directed network composed of N nodes. The
topological structure of the network is encoded in the asym-
metric adjacency matrix, here denoted by A. The element Aij

is equal to 1, if nodes i and j are connected, or zero otherwise.
Each node i is populated by two species, whose concentrations
are, respectively, labeled xi and yi . The species may react or
diffuse throughout the network, as specified by the following
general set of equations:

d

dt
xi = f (xi,yi,μ) + Dx

N∑
j=1

�ijxj ,

d

dt
yi = g(xi,yi,μ) + Dy

N∑
j=1

�ijyj (1)

where f (·, · ,μ) and g(·, · ,μ) are nonlinear functions of the
concentration, which descend from the specific reactions at
play. μ is a vector of arbitrary dimension, where we imagine
stored the scalar parameters, as, e.g., the rates associated to
the reactions chain, which appear to modulate the process
of mutual and self-interaction. � stands for the Laplacian
matrix associated to the examined network. More explicitly,
�ij = Aij − δij ki where ki = ∑

j Aij represents the degree
of node i. Dx and Dy are the diffusion coefficients. To make
contact with the analysis carried out in [14], we shall deal with
perfectly balanced networks, namely, graphs characterized
by an identical number of ingoing and outgoing links. We
will then assume that Eqs. (1) admit a homogeneous stable
equilibrium identified as (x∗,y∗). To save notations, it is
convenient to define a vector which contains the concentrations
xi and yi at any node location i = 1, . . . ,N , namely, x =
(x1, . . . ,xN ,y1, . . . ,yN )T . Consequently, x∗ will refer to the
aforesaid steady state. We are here interested in the conditions
that yield a destabilization of the homogeneous stationary
stable solution x∗, as follows the injection of a tiny perturbation
which activates nontrivial interferences between diffusion and
reaction terms. As anticipated above, the directed spatial
support matters: it can actively seed an instability, which is
instead prevented to occur when the problem is formulated on
a symmetric spatial backing. In the following, we shall briefly
recall the main steps of the linear analysis theory: these are in
fact propedeutic to the forthcoming developments, which aim
at the full nonlinear picture.

A. Linear stability analysis

Introduce a small inhomogeneous perturbation, δxi and
δyi , to the uniform steady state. In formulas, (xi,yi) =
(x∗,y∗) + (δxi,δyi) for i = 1, . . . ,N . Substitute the latter
ansatz into Eqs. (1): Taylor expanding the obtained sys-
tem and packing δxi and δyi into the column vector u =
(δx1, . . . ,δxN,δy1, . . . ,δyN )T , one immediately finds the fol-
lowing equation for the time evolution of u:

∂

dt
u = (L + D)u + Muu + Nuuu (2)

where L and D are two 2N × 2N block matrices

L =
(

fx(x∗)IN fy(x∗)IN

gx(x∗)IN gy(x∗)IN

)
D =

(
Dx� ON

ON Dy�

)

with IN and ON denoting, respectively, the identity matrix
and the null matrix of size N . Muu and Nuuu are symbolic
notations, mutuated from [16]. These are vectors the ith
components of which, respectively, read

(Muu)i = 1

2!

⎧⎨
⎩

∑
j,k∈{i,i+N}

∂2f (x∗)
∂xj ∂xk

ujuk for i � N∑
j,k∈{i,i−N}

∂2g(x∗)
∂xj ∂xk

ujuk for i > N
,

(Nuuu)i = 1

3!

⎧⎨
⎩

∑
j,k,l∈{i,i+N}

∂3f (x∗)
∂xj ∂xk∂xl

ujukul for i � N∑
j,k,l∈{i,i−N}

∂3g(x∗)
∂xj ∂xk∂xl

ujukul for i > N
.

The study of the stability of (x∗,y∗) relies on the linear part of
Eq. (2):

(L + D)u = λu. (3)

To solve the above linear system, one needs to introduce
the eigenvalues �(α) and eigenvectors φ(α) of the Laplacian
operator [7,14]. These are solutions of the eigenvalue problem
�φ(α) = �(α)φ(α) for α = 1, . . . ,N . Importantly, when the
hosting network is directed, the eigenvalues of the Laplacian
are complex. This latter property is ultimately responsible for
the peculiar behavior of reaction-diffusion systems placed on
asymmetric graphs, as compared to their undirected homologs.
The inhomogeneous perturbations δxi and δyi can be expanded
as

δxi =
N∑

α=1

cαeλ(α)tφα
i δyi =

N∑
α=1

η(α)cαeλ(α)tφα
i (4)

where cα depend on initial conditions, and η(α) will be self-
consistently specified later on. Inserting Eq. (4) into Eq. (3)
yields an N copy of the following system:(

fx + Dx�
(α) − λ(α) fy

gx gy + Dy�
(α) − λ(α)

)(
1

η(α)

)

=
(

0
0

)
, (5)

which admits a nontrivial solution provided

det

(
fx + Dx�

(α) − λ(α) fy

gx gy + Dy�
(α) − λ(α)

)
= 0. (6)
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Equation (6) returns a second order polynomial for λ(α) as a
function of �(α), known as the dispersion relation. The stability
of (x∗,y∗) depends on the sign of the real part of λ(α), here
termed λ

(α)
Re : if λ

(α)
Re is negative ∀α, the (x∗,y∗) is stable, while it

turns unstable if λ
(α)
Re crosses punctually the x axis. In this case,

the imposed perturbation grows exponentially, in the linear
regime of the evolution, and the system displays self-organized
patterns at the nonlinear stage of the evolution. Stationary
stable patterns develop when the instability takes place on
ordinary continuum space or on a symmetric graph. These
are the celebrated Turing patterns, that typify on networks as a
material segregation in activator rich and activator poor groups.
For reaction-diffusion systems on directed supports, waves are
instead obtained as the late time echo of the instability.

Starting from these premises, we here wish to address the
full nonlinear dynamics that stems from a topology-driven
instability, and eventually obtain a close form solution for
the emerging traveling waves. To reach this goal we shall
initialize the system right at the threshold of the instability
(μ ≡ μ0), when the real part of the dispersion relation is about
to cross the horizontal axis, and then perturb the reaction
parameter μ0 so as to make the homogeneous fixed point
slightly unstable. A multiple time scale perturbative analysis,
which accommodates for key topological ingredients, will
open up the avenue to a detailed characterization of the
complete nonlinear picture.

When μ = μ0, the maximum value of λ
(α)
Re is therefore

identically equal to zero, for a critical index α = αc, to which
corresponds a selected Laplacian eigenvalue �(αc) = �

(αc)
Re +

i�
(αc)
Im . Since �

(αc)
Im �= 0, it follows [14] that λ(αc) �= 0. Indeed,

λ(αc) = ±iω0, where ω0 = h(�(αc)
Re )�(αc)

Im with h(�(αc)
Re ) =

(2DxDy�
(αc)
Re +fxDy +gyDx)/[fx +gy + (Dy +Dx)�(αc)

Re ], as
determined from a straightforward calculation. From Eq. (5),
one can readily obtain η(αc) = −(fx + Dx�

(αc)
Re )/fy + i(ω0 −

Dx�
(αc)
Im )/fy . The solution of the linear problem(

∂

∂t
I2N − L − D

)
u = 0 (7)

is hence given by

u = U0e
iω0t + c.c. (8)

where c.c. stands for the complex conjugate. Here
U0 = (φ(αc); η(αc)φ(αc)) is the right eigenvector of L + D
corresponding to the eigenvalue iω0. As we shall see, U0

encodes the spatial characteristics of the predicted pattern.

B. Multiscale analysis: A topology dependent
Stuart-Landau equation

Let us start from the neutral condition highlighted above,
when the parameters are set to the marginal value μ0 that yields
λ

(αc)
Re = 0. Imagine we impose an appropriate perturbation in

the form μ = μ0 + ε2μ1, where ε plays the role of a small
parameter, and μ1 is order 1. This modulation allows a tiny
instability to develop: the dispersion relation acquires therefore
a positive real part, which consistently scales as ε2. This
latter observation sets the characteristic time scale for the
examined instability, and opens up the perspective for a formal

mathematical investigation. Following the prescription of the
multiple time scale technique, we introduce τ = ε2t , the slow
time variable, which we treat as independent from time t . In the
solution of the perturbation problem, the additional freedom
introduced by the new independent time variable will be
exploited to remove undesired secular terms. As we shall see,
the latter set constraints on the approximate solution, which
are called solvability conditions. It is important to remark that
the introduction of a perturbation in the vector μ0 does not
change the nature of the underlying homogenous equilibrium
point. The homogeneous steady state keeps its stability, while
the imposed perturbation pushes the system inside the domain
of spatial instability. Initial inhomogeneous perturbations of
the homogeneous fixed point can grow in time and drive the
system towards an asymptotic, spatially extended pattern.

The total derivative with respect to the original time t

rewrites

d

dt
−→ ∂

∂t
+ ε2 ∂

∂τ
. (9)

Moreover, one may assume the following expansions to hold:

L = L0 + ε2L1 + · · · , M = M0 + ε2M1 + · · · ,

N = N0 + ε2N1 + · · · , (10)

the unperturbed parameters μ0 and the associated correction
factors μ1 being implicitly contained in the definition of the
above operators. We further assume that u, the solution of
the nonlinear equation (2), can be expressed as a perturbative
series, a function of both t and τ :

u(t) = εu1(t,τ ) + ε2u2(t,τ ) + · · · . (11)

To proceed in the analysis, one inserts Eqs. (9)–(11) into
Eq. (2) to get(

∂

∂t
I2N + ε2 ∂

∂τ
I2N − L0 − D − ε2L1 − · · ·

)

× (εu1 + ε2u2 + · · · )

= ε2M0u1u1 + ε3(2M0u1u2 + N0u1u1u1) + O(ε4).

Equating terms of the same order in ε returns the following
family of equations:(

∂

∂t
I2N − L0 − D

)
uν = Bν (12)

with ν = 1,2,3, . . .. Following the Fredholm theorem (see
Appendix A), the linear system (12) admits a nontrivial
solution if the solvability condition is satisfied, namely, if
〈(U∗

0)†,B(1)
ν 〉 = 0, where the angular brackets denotes the scalar

product.
We shall hereafter focus on the first three equations of

the above hierarchy. The corresponding right-hand sides (see
also Appendix A), respectively, read B1 = 0, B2 = M0u1u1,
and B3 = (− ∂

∂τ
I2N + L1)u1 + 2M0u1u2 + N0u1u1u1. The

solvability condition is naturally met for ν = 1,2, while it
needs to be explicitly imposed for ν = 3.

Consider first the leading order contribution, ν = 1, and
solve the corresponding differential equation for u1. As
expected, this is equivalent to Eq. (7), that we derived under
the linear approximation. Hence, u1 follows from Eq. (8)
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modified with the inclusion of an arbitrary, complex, and so
far undermined amplitude factor W (τ ), function of the slow
time scale τ . In formulas

u1(t,τ ) = W (τ )u = W (τ )U0e
iω0t + c.c. (13)

As we will see, the factor W (τ ) sets the typical amplitude
of the emerging patterns: it should be constrained to match
the required solvability condition and so self-consistently
determined via the multiple-scale calculation. As already
emphasized, Eq. (13) constitutes a natural generalization of
the linear solution (8), which indirectly accommodates for the
nonlinearities through the slow varying amplitude factor W .
This will in turn enable us to track the time evolution of the
patterns, beyond the initial stage of the exponential growth.
The remaining part of the calculation is devoted to deriving
a consistent equation for the time evolution of the complex
amplitude W . As we shall see, this amounts to imposing the
solvability condition at ν = 3.

To solve the next-to-leading order (ν = 2) equation in
Eq. (12), we put forward the following ansatz [16] for u2:

u2 = W 2V+e2iω0t + W̄ 2V−e−2iω0t + v0u1 + |W |2V0.

The constant v0 cannot be determined at this stage, and
will not affect the forthcoming developments. Inserting in
Eq. (12) and grouping together the terms that do not depend
on t , one finds V0 = −2(L0 + D)−1M0U0Ū0 where the
bar stands for the conjugate. Similarly, equating the terms
proportional to e2iω0t (respectively, e−2iω0t ) yields V+ = V̄− =
(2iω0IN − L0 − D)−1M0U0U0.

At the next order in the hierarchy, ν = 3, the linear equation
for u3 builds on the above characterization for both u1

and u2. In particular, the unknown complex amplitude W

enters the definition of the right-hand side B3. By imposing
the solvability condition 〈(U∗

0)†,B(1)
3 〉 = 0, and carrying out

a straightforward manipulation, one eventually obtains the
following SL equation for W (τ ):

d

dτ
W (τ ) = g(0)W − g(1)|W |2W (14)

where g(0) ≡ g
(0)
Re + ig

(0)
Im = (U∗

0)†L1U0 and g(1) ≡ g
(1)
Re +

ig
(1)
Im = −(U∗

0)†[2M0V+Ū0 +2M0V0U0 + 3N0U0U0Ū0] are
complex numbers. Notice that g(0) and g(1) depend both on
the reaction terms of the original system (1), through, e.g.,
L1, M0, and N0, and on the topological characteristics of the
embedding network, via U0. To derive Eq. (14) use has been
made of the normalization condition (U∗

0)†U0 = 1.
The solution of Eq. (14) can be cast in the form

W (τ ) =
√√√√ g

(0)
Re∣∣g(1)
Re

∣∣ exp

[
i

(
g

(0)
Im − g

(1)
Im

g
(0)
Re∣∣g(1)
Re

∣∣
)

τ + iψ

]
(15)

where ψ is a phase term which relates to the assigned initial
conditions.

Summing up, and recalling Eq. (13), the wavelike pattern
x(t,ε), instigated by the directed network, close to the threshold
of instability, will be approximately described by [20]

x(t) = x∗ +
⎧⎨
⎩ε

√√√√ g
(0)
Re∣∣g(1)
Re

∣∣U0 exp

[
iω0t

+ i

(
g

(0)
Im − g

(1)
Im

g
(0)
Re∣∣g(1)
Re

∣∣
)

τ

]
+ c.c.

⎫⎬
⎭ (16)

for τ = ε2t = O(1) and where we have arbitrarily set ψ = 0.
As anticipated, the structure of the graph which ultimately
drives the instability enters parametrically the above solution
(16). In the following, we shall indicate with Ax,y the
amplitude of the oscillating patterns for, respectively, species
x and y, around the average solution.

C. Alternative perturbation scheme:
Acting on the diffusion coefficients

In the previous section we have seen how to characterize
the emerging patterns when they originate from a pertur-
bation of the reaction coefficients μ. Similarly, one could
imagine inducing the instability by perturbing the diffusion
constants from Dx and Dy . More specifically, we initialize
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FIG. 1. (a) The blue triangles represent the real part of the dispersion relation as a function of (minus) the real part of the eigenvalues of
the hosting directed network. The black line originates from the continuous theory. (b) Pattern emerging from species y as obtained by direct
integration of system (1). The concentration on each node is plotted as a function of time. (c) Pattern relative to species y as determined from
the analytical solution of Eq. (16). The network is made of N = 100 nodes and has been generated following the NW recipe with p = 0.27.
Parameters are a = 2.1, bc = 4.002, c = 1, d = 1, Dx = 1, and Dy = 3. The perturbation is here acting on b as b = bc(1 + ε2), with ε2 = 0.1.
For ε2 < 0.35, the analytical solution is adequate, at least for this choice of the parameters and network topology. For larger values of ε2 the
agreement starts worsening.
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FIG. 2. Amplitude of the self-emerging oscillations as a function
of the shift parameter n. Here K = 27 and n ∈ (0,12). Orange
dots refer to the amplitudes obtained from Eq. (16), while green
symbols follow from numerical integration of the Brusselator model.
The main panel refers to the amplitude of the patterns relative to
species y, while, in the inset, the amplitudes are calculated for
species x. Parameters are a = 4, c = 1, d = 1, Dx = 1, Dy = 3.
The instabilities come from the perturbation of parameter b as
b = bc(1 + ε2) for ε2 = 0.1. For each n, the critical value of bc is
calculated so as to satisfy the condition max(λ(α)

Re ) = λ
(αc )
Re = 0.

the unperturbed system so as to match the marginal condition
λ

(αc)
Re = 0 and then perform the change Dx → Dx + ε2Dx1 and

Dy → Dy + ε2Dy1, where ε is a small parameter, and Dx1 and
Dy1 are order 1 scalar quantities. Proceeding in analogy with
the above yields a SL differential equation for the evolution
of the complex amplitude factor W (τ ), where g1 is unchanged
and g0 = (U∗

0)†D1U0 where

D1 =
(

Dx1� ON

ON Dy1�

)
.

D. Numerical validation of the theory

We here aim at testing the predictions of the theory, by
drawing a comparison with the outcome of direct simulations

performed for a reaction-diffusion model of paradigmatic
interest. This is the celebrated Brusselator model, a nonlinear
reaction scheme which describes the autocatalytic coupling
of two mutually interacting chemical species. Details of this
model can be found in the Appendix B.

As a first example, we consider the Brusselator model
defined on a balanced network generated with a slightly
modified version of the Newman-Watts algorithm [21] (see
Appendix C). In the left panel of Fig. 1 we display with
symbols the real part of the dispersion relation λ

(α)
Re as a function

of the real part of the Laplacian eigenvalue �
(α)
Re (changed in

sign). The parameters of the model have been set so as to have
the largest value of λ

(α)
Re equal to zero, in correspondence to a

specific −�
(αc)
Re . The solid line represents instead the dispersion

relation obtained, with the same choice of the parameters, for
the limiting case of a symmetric continuous support. If the sys-
tem is placed on top of a symmetric graph, the continuous curve
turns into a discrete collection of points, following exactly the
same profile and reflecting the finite set of (real) eigenvalues,
associated to the Laplacian operator. When the embedding
network is instead asymmetric, the complex component of the
Laplacian spectrum lifts the dispersion relation, as depicted
in the leftmost panel of Fig. 1, thus eventually inducing a
topology-driven instability, in an otherwise dynamically stable
system. In the other two panels of Fig. 1 the patterns obtained
via a numerical integration of the reaction-diffusion system
(1) and the analytical solution (16) are, respectively, reported,
displaying a satisfying degree of correspondence.

As an additional check for the developed theory, we
consider a family of directed regular lattices, with varying level
of imposed asymmetry. More specifically, we preliminarily
assumed a closed one dimensional ring composed of N

nodes: each node has K links to its first K nearest neighbors
encountered when circulating the ring clockwise. Each row
i of the adjacency matrix has zero entries, except for those
elements the column index j of which ranges from (i)mod N

to (k + i − 1)mod N which are filled with ones. The subscript
mod N stands for the modulo operation. The adjacency matrix
which describes such a lattice is then shifted, via n successive
applications of a one-step shift operator, so as to result in a
set of distinct lattices, which tend to progressively approach
the symmetric limiting case. For such n directed networks,
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FIG. 3. Waves on a directed lattice obtained by imposing n = 5 shifts. For the parameters’ description refer to the caption of Fig. 2. Panels
(a) and (b) show the time dependent patterns relative to species x obtained, respectively, from the original Brusselator model and the SL
equation. In panel (c) we display x vs the index of the node, while the inset reports x as a function of time t , for a selected node. In both cases,
green circles refer to data extracted from panel (a) (simulations), and orange squares refer to panel (b) (theory).
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FIG. 4. Waves on a directed lattice obtained by imposing n = 5 shifts. Here, the perturbation acts on the diffusion coefficient: Dx =
Dc

x + ε2Dx1, with Dx1= = −1, Dc
x = 1.086, and ε2 = 0.1. The other parameters are a = 4, b = 11, c = 1, d = 1, Dy = 3. Panels (a) and (b)

show the time dependent patterns relative to species x obtained, respectively, from the original Brusselator model and the SL equation. In panel
(c) we display x vs the index of the node, while the inset reports x as a function of time t , for a selected node. In both cases, green circles refer
to data extracted from panel (a) (simulations), and orange squares refer to panel (b) (theory).

we computed the amplitude of the predicted topology-driven
patterns, as follows Eq. (16), and compared it to the outcome of
numerical simulations based on the original reaction-diffusion
model. Results of the analysis are reported in Fig. 2, where the
amplitude of the pattern is plotted as a function of the degree
of shift n. Here, the instability is produced upon perturbation
of the reaction parameter b. An overall excellent agreement
is observed, between theory and simulations. The predictive
adequacy of the theory can be also appreciated in Fig. 3
where the time dependent patterns are displayed for n = 5,
a representative case study. The same conclusion holds when
the perturbation acts on the diffusion coefficient Dx and Dy ,
as demonstrated in Fig. 4. Here, the imposed perturbation acts
on the diffusion coefficient Dx , as Dx = Dc

x + ε2Dx1.

III. CONCLUSIONS

Self-organized patterns can spontaneously develop in a
multispecies reaction-diffusion system, following a symmetry
breaking instability of a homogeneous equilibrium. Inhomoge-
neous perturbation can in fact amplify due to the constructive
interference between reaction and diffusion terms and eventu-
ally yield coherent spatially extended motifs in the nonlinear
regime of the evolution. Reaction-diffusion systems placed on
symmetric graphs have been also analyzed in the literature.
The conditions for the deterministic instability are derived
via a linear stability analysis, which requires expanding the
perturbation on a complete basis formed by the eigenvectors
of the discrete Laplacian. For a system hosted on undirected
networks, the instability is essentially driven by nonlinearities,
which stem from both reactions and diffusion. The topology
of the embedding networklike support defines the relevant
directions for the spreading of the perturbation, but cannot
influence the onset of the instability. A radically different
scenario is encountered when a directed graph is instead
assumed to provide the spatial backing for the scrutinized
model. In this case, the topology of the space is equally
important and significantly impacts the conditions that drive
the dynamical instability.

Building on these recent advances, the aim of this paper is to
go beyond the standard linear stability analysis for the outbreak

of the instability and provide a complete characterization of the
patterns emerging on a directed discrete support, in the fully
developed nonlinear regime. To this end we have applied a
multiple time scale analysis, generalizing to the present context
the original derivation of [15]. This results in a cumbersome
calculation owing to the particular nature of the diffusive
coupling imposed. The amplitude of the most unstable mode is
shown to obey a Stuart-Landau (SL) equation the coefficients
of which unprecedently reflect the topology of the network, the
genuine drive to the instability. Simulations performed for the
Brussellator model confirm the validity of the theory, which
proves effective in quantitatively grasping the characteristics
of self-emerging dynamical patterns, close to the threshold
of instability. This is a significant achievement which could
translate into novel strategies to control the dynamics of
the system, via appropriate fixing of topological features,
including the supervised addition (removal) of specific nodes
(links) in the network.

Future directions of investigation include the analysis of
topology-driven patterns that originate from a homogeneous
limit cycle. It is anticipated that, in this case, the effective
equation for the evolution of the unstable mode is of the
Ginzbourg-Landau type. Moreover, we aim at considering the
problem of pattern formation on a stochastic perspective [8,9]
and consequently revisit the formal derivation here discussed
to assess the role played by endogenous noise.

ACKNOWLEDGMENTS

This work has been partially supported by Ente Cassa di
Risparmio di Firenze and program PRIN 2012 founded by
the Italian Ministero dell’Istruzione, dell’Università e della
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APPENDIX A: THE SOLVABILITY CONDITION

Let A be a linear operator, and let u(t) and b(t) be
two complex vectors of the same length. According to the
Fredholm theorem, a linear system Au(t) = b(t) is solvable
if 〈v(t),b(t)〉 = 0 for all vector v(t) solutions of A∗v(t) =
0, where A∗ is the adjoint operator satisfying 〈A∗y,x〉 =
〈y,Ax〉 ∀x,y. The angular brackets denote the scalar product
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that we here define as 〈v(t),b(t)〉 = ∫ 2π/ω0

0 v†(t)b(t)dt , the
symbol † standing for the conjugate transpose. With ref-
erence to Eq. (12), the first requirement of the Fredholm
theorem consists in finding v(t) such that (∂/∂tI2N − L0 −
D)∗v(t) = 0. Recalling that L0 and D are real matrices,
by partial integration we find that (∂/∂tI2N − L0 − D)∗ =
−(∂/∂tI2N + L0 + D)T . As a consequence, the system to be
solved is −(∂/∂tI2N + L0 + D)T v(t) = 0. In analogy with
Eq. (7), we search v(t) in the form v(t) = U∗

0e
iω0t for

some vector U∗
0. Substituting this ansatz into the previous

equation, we find (L0 + D)T U∗
0 = −iω0U∗

0. In analogy with
U0, U∗

0 is related to the eigenvalue problem �T ψ (αc) = (�αc

Re −
i�

αc

Im)ψ (αc) through U∗
0 = (ψ (αc) η

(αc)
∗ ψ (αc)0 )

T
with η

(αc)
∗ =

−(fx + Dx�
(αc)
Re )/gy − i(ω0 − Dx�

(αc)
Im )/gy . Having defined

U∗
0, one can explicitly write the solvability condition

〈U∗
0e

iω0t ,Bν(t,τ )〉 = 0. Since Bν(t,τ ) turns out to be periodic
functions of period 2π/ω0, it is appropriate to express them
in the form Bν(t,τ ) = ∑+∞

l=−∞ B(l)
ν (τ )eilω0t . If we multiply this

series by (U∗
0e

iω0t )† we again obtain periodic functions that,
when integrated over the period 2π/ω0, give zero. The only ex-
ception holds for l = 1, which gives 〈U∗

0e
iω0t ,B(1)

ν (τ )eiω0t 〉 =∫ 2π/ω0

0 (U∗
0)†B(1)

ν (τ )dt . The integrand does not depend on time
t and therefore the integral is zero only if the integrand itself
is identically equal to zero. For this reason the solvability
condition reduces to (U∗

0)†B(1)
ν (τ ) = 0 ∀ν.

APPENDIX B: THE BRUSSELATOR MODEL

In the Brusselator model, the two reaction terms are speci-
fied by f (xi,yi,μ) = a − (b + d)xi + cx2

i yi and g(xi,yi,μ) =
bxi − cx2

i yi , where μ = (a,b,c,d) defines a set of positive
real parameters. The unique homogeneous equilibrium point
is (x∗,y∗) = (a/d,bd/c/a).

APPENDIX C: NETWORK GENERATION STRATEGY

We start from a substrate K-regular ring made of N nodes.
The Newman Watts (NW) algorithm [21] is designed to add,
on average, NKp long-range directed links, in addition to the
links that originate from the underlying regular lattice. Here
p lies in the interval [0,1] and represents a probability to
be chosen by the user. The NW algorithm here employed is
modified so as to result in a balanced network (an identical
number of incoming and outgoing links, per node). We recall
that this is a necessary prerequisite for the homogeneous
fixed point solution to exist. To obtain a balanced network
the inclusion of a long-range link starting from node i is
accompanied by the insertion of a fixed number of additional
� links to form a loop that closes on i. Here, we have set � = 3,
the choice that results in the shortest possible nontrivial loops.
Networks with � > 3 can be also generated, yielding similar
conclusions.
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