4,782 research outputs found

    Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck

    Get PDF
    Although Planck data supports the standard \Lambda CDM model, it still allows for the presence of Dark Radiation corresponding up to about half an extra standard neutrino species. We propose a scenario for obtaining a fractional "effective neutrino species" from a thermally produced particle which decays into a much lighter stable relic plus standard fermions. At lifetimes much longer than 1 sec, both the relic particles and the non-thermal neutrino component contribute to Dark Radiation. By increasing the stable-to-unstable particle mass ratio, the relic particle no longer acts as Dark Radiation but instead becomes a candidate for Warm Dark Matter with mass O(1keV - 100GeV). In both cases it is possible to address the lithium problem.Comment: 18 pages, 2 figures; v3 matches version to be published in PL

    Integrated system to perform surrogate based aerodynamic optimisation for high-lift airfoil

    Get PDF
    This work deals with the aerodynamics optimisation of a generic two-dimensional three element high-lift configuration. Although the high-lift system is applied only during take-off and landing in the low speed phase of the flight the cost efficiency of the airplane is strongly influenced by it [1]. The ultimate goal of an aircraft high lift system design team is to define the simplest configuration which, for prescribed constraints, will meet the take-off, climb, and landing requirements usually expressed in terms of maximum L/D and/or maximum CL. The ability of the calculation method to accurately predict changes in objective function value when gaps, overlaps and element deflections are varied is therefore critical. Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of design optimisation. To cut down the cost, surrogate models, also known as metamodels, are constructed from and then used in place of the actual simulation models. This work outlines the development of integrated systems to perform aerodynamics multi-objective optimisation for a three-element airfoil test case in high lift configuration, making use of surrogate models available in MACROS Generic Tools, which has been integrated in our design tool. Different metamodeling techniques have been compared based on multiple performance criteria. With MACROS is possible performing either optimisation of the model built with predefined training sample (GSO) or Iterative Surrogate-Based Optimization (SBO). In this first case the model is build independent from the optimisation and then use it as a black box in the optimisation process. In the second case is needed to provide the possibility to call CFD code from the optimisation process, and there is no need to build any model, it is being built internally during the optimisation process. Both approaches have been applied. A detailed analysis of the integrated design system, the methods as well as th

    Comorbid depressive disorders in ADHD. the role of ADHD severity, subtypes and familial psychiatric disorders

    Get PDF
    ObjectiveaaTo evaluate the presence of Major Depressive Disorder (MDD) and Dysthymic Disorder (DD) in a sample of Italian children with Attention Deficit Hyperactivity Disorder (ADHD) and to explore specific features of comorbid depressive disorders in ADHD. MethodsaaThree hundred and sixty-six consecutive, drug-naïve Caucasian Italian outpatients with ADHD were recruited and comorbid disorders were evaluated using DSM-IV-TR criteria. To evaluate ADHD severity, parents of all children filled out the ADHD Rating Scale. Thirty-seven children with comorbid MDD or DD were compared with 118 children with comorbid conduct disorder and 122 without comorbidity for age, sex, IQ level, family psychiatric history, and ADHD subtypes and severity. Resultsaa42 of the ADHD children displayed comorbid depressive disorders: 16 exhibited MDD, 21 DD, and 5 both MDD and DD. The frequency of hyperactive-impulsive subtypes was significantly lower in ADHD children with depressive disorders, than in those without any comorbidity. ADHD children with depressive disorders showed a higher number of familial psychiatric disorders and higher score in the Inattentive scale of the ADHD Rating Scale, than children without any comorbidity. No differences were found for age, sex and IQ level between the three groups. Conclusions: Consistent with previous studies in other countries, depressive disorders affect a significant proportion of ADHD children in Italy. Patient assessment and subsequent treatment should take into consideration the possible presence of this comorbidity, which could specifically increase the severity of ADHD attention problems

    Successful N2 leptogenesis with flavour coupling effects in realistic unified models

    No full text
    In realistic unified models involving so-called SO(10)-inspired patterns of Dirac and heavy right-handed (RH) neutrino masses, the lightest right-handed neutrino N1 is too light to yield successful thermal leptogenesis, barring highly fine tuned solutions, while the second heaviest right-handed neutrino N2 is typically in the correct mass range. We show that flavour coupling effects in the Boltzmann equations may be crucial to the success of such N2 dominated leptogenesis, by helping to ensure that the flavour asymmetries produced at the N2 scale survive N1 washout. To illustrate these effects we focus on N2 dominated leptogenesis in an existing model, the A to Z of flavour with Pati-Salam, where the neutrino Dirac mass matrix may be equal to an up-type quark mass matrix and has a particular constrained structure. The numerical results, supported by analytical insight, show that in order to achieve successful N2 leptogenesis, consistent with neutrino phenomenology, requires a "flavour swap scenario" together with a less hierarchical pattern of RH neutrino masses than naively expected, at the expense of some mild fine-tuning. In the considered A to Z model neutrino masses are predicted to be normal ordered, with an atmospheric neutrino mixing angle well into the second octant and the Dirac phase δ ≅ 20º, a set of predictions that will be tested in the next years in neutrino oscillation experiments. Flavour coupling effects may be relevant for other SO(10)-inspired unified models where N2 leptogenesis is necessary

    A fuller flavour treatment of N_2-dominated leptogenesis

    No full text
    We discuss N_2-dominated leptogenesis in the presence of flavour dependent effects that have hitherto been neglected, in particular the off-diagonal entries of the flavour coupling matrix that connects the total flavour asymmetries, distributed in different particle species, to the lepton and Higgs doublet asymmetries. We derive analytical formulae for the final asymmetry including the flavour coupling at the N_2-decay stage as well as at the stage of washout by the lightest right-handed neutrino N_1. We point out that in general part of the electron and muon asymmetries can completely escape the wash-out at the production and a total B-L asymmetry can be generated by the lightest RH neutrino wash-out yielding so called phantom leptogenesis. Taking of all these new effects into account can enhance the final asymmetry produced by the decays of the next-to-lightest RH neutrinos by orders of magnitude, opening up new interesting possibilities for N_2-dominated thermal eptogenesis. We illustrate these effects for two models which describe realistic neutrino masses and mixing based on sequential dominance

    The root towards more circularized animal production systems: From animal to territorial metabolism

    Get PDF
    This paper deals with a relevant topic in the literature on sustainable management of animal farms, concerning the transition towards circular methods of animal production. The paper aims to put forward an original analytical multilevel perspective overlapping different dimensions at either micro, meso, and macro level. Starting from the Malthusian analysis on depletion of natural resources, with risks of the fragility of the natural and economic systems, the paper points out the importance of moving away from intensive methods of production, by adopting more circularized approaches based on resources efficiency. The application of circular economy approaches to animal production is theorized through the concept of territorial metabolism involving not only internal resources (at the animal farm level) but also territorial resources. The paper underlines the critical points of the transition, which is labeled as a socio-technical transition in that it involves not only technical issues but also social aspects. Critical points are addressed through consumers\u2019 acceptance of products drawn on circular approaches and political support to transition, through political tools which are boosted in recent documents of the European Union, like the Green Deal and Farm to Fork strategy

    Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing

    Get PDF
    We present a review of the basic operating principles and measurement schemes of standalone and hybrid distributed optical fiber sensors based on Raman and Brillouin scattering phenomena. Such sensors have been attracting a great deal of attention due to the wide industrial applications they offer, ranging from energy to oil and gas, transportation and structural health monitoring. In distributed sensors, the optical fiber itself acts as a sensing element providing unique measurement capabilities in terms of sensing distance, spatial resolution and number of sensing points. The most common configuration exploits optical time domain reflectometry, in which optical pulses are sent along the sensing fiber and the backscattered light is detected and processed to extract physical parameters affecting its intensity, frequency, phase, polarization or spectral content. Raman and Brillouin scattering effects allow the distributed measurement of temperature and strain over tens of kilometers with meter-scale spatial resolution. The measurement is immune to electromagnetic interference, suitable for harsh environments and highly attractive whenever large industrial plants and infrastructures have to be continuously monitored to prevent critical events such as leakages in pipelines, fire in tunnels as well as structural problems in large infrastructures like bridges and rail tracks. We discuss the basic sensing mechanisms based on Raman and Brillouin scattering effects used in distributed measurements, followed by configurations commonly used in optical fiber sensors. Hybrid configurations which combine Raman and Brillouin-based sensing for simultaneous strain and temperature measurements over the same fiber using shared resources will also be addressed. We will also discuss advanced techniques based on pulse coding used to overcome the tradeoff between sensing distance and spatial resolution affecting both types of sensors, thereby allowing measurements over tens of kilometers with meter-scale spatial resolution, and address recent advances in measurement schemes employing the two scattering phenomena
    • …
    corecore