290 research outputs found

    Solid-state microwave processor for food treatment

    Full text link
    [EN] Uneven heating and hot spots, irregular matching conditions and deterioration of organoleptic qualities are typical drawbacks of magnetron-based food processing with microwave radiation. The proposed “Kopernicook” modular architecture, based on multiple solid-state generators governed by a distributed software platform, allows highly accurate parametric control, full customization of radiation patterns and dynamic self-regulating workflows. The first results, validated with industrial applications, show great flexibility of operation, optimal energy consumption and different ideas for future developments in terms of radiation patterns and feedback-triggered algorithms aimed at maximally efficient processes.Fiore, M.; Di Modugno, N.; Pellegrini, F.; Roselli, M. (2019). Solid-state microwave processor for food treatment. En AMPERE 2019. 17th International Conference on Microwave and High Frequency Heating. Editorial Universitat Politùcnica de Valùncia. 152-158. https://doi.org/10.4995/AMPERE2019.2019.9862OCS15215

    Case report: “Scared to deaf”: medical-legal evaluation of a suspected post -traumatic stress disorder”

    Get PDF
    The case concerns the alleged failure by the resisting administration to fulfill obligations arising from the contract and employment relationship, as well as the violation of safety regulations leading to the workplace accident reported by an Airforce Sergeant. Following the accident, the soldier complains of developing barotraumatic hearing loss with tinnitus and reactive post-traumatic stress disorder to the traumatic event. The case provides an opportunity to analyze the relevance of forensic medical assessment and its integration with psychodiagnostic examination for the correct nosographic classification aimed at evaluating and quantifying biological damage

    Nab-PIPAC: a phase IB study protocol of intraperitoneal cisplatin and nab-paclitaxel administered by pressurised intraperitoneal aerosol chemotherapy (PIPAC) in the treatment of advanced malignancies confined to the peritoneal cavity

    Get PDF
    Introduction: Intraperitoneal dissemination is a major problem resulting in very poor prognosis and a rapid marked deterioration in the quality of life of patients. Pressurised intraperitoneal aerosol chemotherapy (PIPAC) is an emergent laparoscopic procedure aiming to maximise local efficacy and to reduce systemic side effects. Methods and analysis: Nab-PIPAC, a bicentre open-label phase IB, aims to evaluate safety of nab-paclitaxel and cisplatin association using in patients with peritoneal carcinomatosis (PC) of gastric, pancreatic or ovarian origin as ≄1 prior line of systemic therapy. Using a 3+3 design, sequential intraperitoneal laparoscopic application of nab-paclitaxel (7.5, 15, 25, 37.5, 52.5 and 70 mg/m2) and cisplatin (10.5 mg/m2) through a nebuliser to a high-pressure injector at ambient temperature with a maximal upstream pressure of 300 psi. Treatment maintained for 30 min at a pressure of 12 mm Hg and repeated4-6 weeks intervals for three courses total.A total of 6-36 patients are expected, accrual is ongoing. Results are expected in 2024.The primary objective of Nab-PIPAC trial is to assess tolerability and safety of nab-paclitaxel and cisplatin combination administered intraperitoneally by PIPAC in patients with PC of gastric, pancreatic or ovarian origin. This study will determine maximum tolerated dose and provide pharmacokinetic data. Ethic and dissemination: Ethical approval was obtained from the ethical committees of Geneva and Vaud (CCER-2018-01327). The study findings will be published in an open-access, peer-reviewed journal and presented at relevant conferences and research meetings. Trial registration number: NCT04000906.</p

    Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation

    Get PDF
    The latest development of protein engineering allows the production of proteins having desired properties and large potential markets, but the clinical advances of therapeutical proteins are still limited by their fragility. Nanotechnology could provide optimal vectors able to protect from degradation therapeutical biomolecules such as proteins, enzymes or specific polypeptides. On the other hand, some proteins can be also used as active ligands to help nanoparticles loaded with chemotherapeutic or other drugs to reach particular sites in the body. The aim of this review is to provide an overall picture of the general aspects of the most successful approaches used to combine proteins with nanosystems. This combination is mainly achieved by absorption, bioconjugation and encapsulation. Interactions of nanoparticles with biomolecules and caveats related to protein denaturation are also pointed out. A clear understanding of nanoparticle-protein interactions could make possible the design of precise and versatile hybrid nanosystems. This could further allow control of their pharmacokinetics as well as activity, and safety

    Antioxidant Efficacy of Olive By-Product Extracts in Human Colon HCT8 Cells

    Get PDF
    The production of olive oil is accompanied by the generation of a huge amount of waste and by-products including olive leaves, pomace, and wastewater. The latter represents a relevant environmental issue because they contain certain phytotoxic compounds that may need specific treatments before the expensive disposal. Therefore, reducing waste biomass and valorizing by-products would make olive oil production more sustainable. Here, we explore the biological actions of extracts deriving from olive by-products including olive pomace (OP), olive wastewater (OWW), and olive leaf (OLs) in human colorectal carcinoma HCT8 cells. Interestingly, with the same phenolic concentration, the extract obtained from the OWW showed higher antioxidant ability compared with the extracts derived from OP and OLs. These biological effects may be related to the differential phenolic composition of the extracts, as OWW extract contains the highest amount of hydroxytyrosol and tyrosol that are potent antioxidant compounds. Furthermore, OP extract that contains a higher level of vanillic acid than the other extracts displayed a cytotoxic action at the highest concentration. Together these findings revealed that phenols in the by-product extracts may interfere with signaling molecules that cross-link several intracellular pathways, raising the possibility to use them for beneficial health effects

    A method for the analysis of the oligomerization profile of the Huntington’s disease-associated, aggregation-prone mutant huntingtin protein by isopycnic ultracentrifugation

    Get PDF
    Conformational diseases, such as Alzheimer’s, Parkinson’s and Huntington’s diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington’s disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein. There is still no successful strategy to treat HD. In addition, the current understanding of the biological processes leading to the oligomerization and aggregation of proteins bearing the poly-Q tract has been derived from studies conducted on isolated poly-Q monomers and oligomers, whose structural properties are still unclear and often inconsistent. Here we describe a standardised biochemical approach to analyse by isopycnic ultracentrifugation the oligomerization of the N-terminal fragment of mutant HTT. The dynamic range of our method allows one to detect large and heterogeneous HTT complexes. Hence, it could be harnessed for the identification of novel molecular determinants responsible for the aggregation and the prion-like spreading properties of HTT in the context of HD. Equally, it provides a tool to test novel small molecules or bioactive compounds designed to inhibit the aggregation of mutant HTT
    • 

    corecore