64 research outputs found

    Long non-coding RNA H19 enhances the pro-apoptotic activity of ITF2357 (a histone deacetylase inhibitor) in colorectal cancer cells

    Get PDF
    : Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in colorectal cancer (CRC) and plays critical roles in tumor development, proliferation, metastasis, and drug resistance. Indeed, the expression of lncH19 usually affects the outcomes of chemo-, endocrine, and targeted therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that revealed a significant anti-tumor action by inducing apoptosis in different tumor models, including leukemia, melanoma, and glioblastoma. However, no data are present in the literature regarding the use of this compound for CRC treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in CRC cells. Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow cytometric analyses were performed to assess the anti-proliferative and pro-apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19. RT-PCR and Western blot were used to study the effects of ITF2357 on autophagy and apoptosis markers. Finally, bioinformatics analyses were used to identify miRNAs targeting pro-apoptotic factors that can be sponged by lncH19. Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell viability, inducing apoptosis, as demonstrated by the increase in annexin-V positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1) degradation. Interestingly, the apoptotic effect of ITF2357 was much less evident in lncH19-silenced cells. We showed that lncH19 plays a functional role in the pro-apoptotic activity of the drug by stabilizing TP53 and its transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in CRC cells, which was interpreted as a pro-survival response not correlated with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-fluorouracil-resistant HCT-116 cells that express high levels of lncH19. Conclusion: This study shows that lncH19 expression contributes to ITF2357-induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil chemoresistance

    Redox Imbalance and Mitochondrial Release of Apoptogenic Factors at the Forefront of the Antitumor Action of Mango Peel Extract

    Get PDF
    Today, an improved understanding of cancer cell response to cellular stress has become more necessary. Indeed, targeting the intracellular pro-oxidant/antioxidant balance triggering the tumor commitment to cell demise could represent an advantageous strategy to develop cancer-tailored therapies. In this scenario, the present study shows how the peel extract of mango—a tropical fruit rich in phytochemicals with nutraceutical properties—can affect the cell viability of three colon cancer cell lines (HT29, Caco-2 and HCT116), inducing an imbalance of cellular redox responses. By using hydro-alcoholic mango peel extract (MPE), we observed a consistent decline in thiol group content, which was accompanied by upregulation of MnSOD—a mitochondrial scavenger enzyme that modulates the cellular response against oxidative damage. Such an effect was the consequence of an early production of mitochondrial superoxide anions that appeared after just 30 min of exposure of colon cancer cells to MPE. The effect was accompanied by mitochondrial injury, consisting of the dissipation of mitochondrial membrane potential and a decrease in the level of proteins localized in the mitochondrial membrane—such as voltage-dependent anion-selective channel (VDAC1), mitofilin, and some members of Bcl-2 family proteins (Mcl-1, Bcl-2 and Bcl-XL)—with the mitochondrial release of apoptogenic factors (cytochrome C and AIF). The analysis of the cytotoxic effects exerted by the different constituents of MPE (gallic acid, mangiferin, citric acid, quinic acid, pentagalloyl glucose, and methyl gallate) allowed us to identify those phytochemicals responsible for the observed anticancer effects, sustaining their future employment as chemopreventive or therapeutic agents

    Oncogenic BRAF and p53 Interplay in Melanoma Cells and the Effects of the HDAC Inhibitor ITF2357 (Givinostat)

    Get PDF
    Oncogenic BRAF mutations have been widely described in melanomas and promote tumour progression and chemoresistance. We previously provided evidence that the HDAC inhibitor ITF2357 (Givinostat) targets oncogenic BRAF in SK-MEL-28 and A375 melanoma cells. Here, we show that oncogenic BRAF localises to the nucleus of these cells, and the compound decreases BRAF levels in both the nuclear and cytosolic compartments. Although mutations in the tumour suppressor p53 gene are not equally frequent in melanomas compared to BRAF, the functional impairment of the p53 pathway may also contribute to melanoma development and aggressiveness. To understand whether oncogenic BRAF and p53 may cooperate, a possible interplay was considered in the two cell lines displaying a different p53 status, being p53 mutated into an oncogenic form in SK-MEL-28 and wild-type in A375 cells. Immunoprecipitation revealed that BRAF seems to preferentially interact with oncogenic p53. Interestingly, ITF2357 not only reduced BRAF levels but also oncogenic p53 levels in SK-MEL-28 cells. ITF2357 also targeted BRAF in A375 cells but not wild-type p53, which increased, most likely favouring apoptosis. Silencing experiments confirmed that the response to ITF2357 in BRAF-mutated cells depends on p53 status, thus providing a rationale for melanoma-targeted therapy

    Thyroid Cancer Resistance to Chemotherapeutic Drugs via Autocrine Production of Interleukin-4 and Interleukin-10

    Get PDF
    We investigated the mechanisms responsible for the widespread refractoriness to chemotherapeutic drugs observed in thyroid cancers. We show that malignant epithelial cells from papillary, follicular, and anaplastic thyroid carcinomas express high levels of Bcl-2 and Bcl-xL. Exogenous expression of either Bcl-2 or Bcl-xL in normal thyrocytes was sufficient to prevent chemotherapeutic drug-induced cytotoxicity. All of the histological thyroid cancer variants examined produced interleukin-4 (IL-4) and interleukin-10 (IL-10), which increased Bcl-2 and Bcl-xL levels and protected thyroid cells from chemotherapeutic agents. Exposure to neutralizing antibodies against IL-4 and IL-10 resulted in down-modulation of Bcl-2 and Bcl-xL, death of a considerable percentage of thyroid cancer cells, and sensitization of the residual tumor population to cytotoxic drug-induced apoptosis. In conclusion, autocrine production of IL-4 and IL-10 promotes thyroid tumor cell progression and resistance to chemotherapy through the up-regulation of antiapoptotic proteins. Thus, IL-4 and IL-10 may represent new therapeutic targets for the treatment of thyroid cancer

    Hypertrophy and ER Stress Induced by Palmitate Are Counteracted by Mango Peel and Seed Extracts in 3T3-L1 Adipocytes

    Get PDF
    A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARÎł as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity

    Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection

    Get PDF
    D6 is a decoy and scavenger receptor for inflammatory CC chemokines. D6-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis. The death of D6−/− mice was associated with a dramatic local and systemic inflammatory response with levels of M. tuberculosis colony-forming units similar to control D6-proficient mice. D6-deficient mice showed an increased numbers of mononuclear cells (macrophages, dendritic cells, and CD4 and CD8 T lymphocytes) infiltrating inflamed tissues and lymph nodes, as well as abnormal increased concentrations of CC chemokines (CCL2, CCL3, CCL4, and CCL5) and proinflammatory cytokines (tumor necrosis factor α, interleukin 1ÎČ, and interferon Îł) in bronchoalveolar lavage and serum. High levels of inflammatory cytokines in D6−/− infected mice were associated with liver and kidney damage, resulting in both liver and renal failure. Blocking inflammatory CC chemokines with a cocktail of antibodies reversed the inflammatory phenotype of D6−/− mice but led to less controlled growth of M. tuberculosis. Thus, the D6 decoy receptor plays a key role in setting the balance between antimicrobial resistance, immune activation, and inflammation in M. tuberculosis infection

    Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease

    Get PDF
    nflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environ- mental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment
    • 

    corecore