165 research outputs found

    Vanillin production using metabolically engineered Escherichia coli under non-growing conditions

    Get PDF
    BACKGROUND: Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources. This has led to the investigation of other routes to obtain this flavour such as the biotechnological production from ferulic acid. Studies concerning the use of engineered recombinant Escherichia coli cells as biocatalysts for vanillin production are described in the literature, but yield optimization and biotransformation conditions have not been investigated in details. RESULTS: Effect of plasmid copy number in metabolic engineering of E. coli for the synthesis of vanillin has been evaluated by the use of genes encoding feruloyl-CoA synthetase and feruloyl hydratase/aldolase from Pseudomonas fluorescens BF13. The higher vanillin production yield was obtained using resting cells of E. coli strain JM109 harbouring a low-copy number vector and a promoter exhibiting a low activity to drive the expression of the catabolic genes. Optimization of the bioconversion of ferulic acid to vanillin was accomplished by a response surface methodology. The experimental conditions that allowed us to obtain high values for response functions were 3.3 mM ferulic acid and 4.5 g/L of biomass, with a yield of 70.6% and specific productivity of 5.9 μmoles/g × min after 3 hours of incubation. The final concentration of vanillin in the medium was increased up to 3.5 mM after a 6-hour incubation by sequential spiking of 1.1 mM ferulic acid. The resting cells could be reused up to four times maintaining the production yield levels over 50%, thus increasing three times the vanillin obtained per gram of biomass. CONCLUSION: Ferulic acid can be efficiently converted to vanillin, without accumulation of undesirable vanillin reduction/oxidation products, using E. coli JM109 cells expressing genes from the ferulic acid-degrader Pseudomonas fluorescens BF13. Optimization of culture conditions and bioconversion parameters, together with the reuse of the biomass, leaded to a final production of 2.52 g of vanillin per liter of culture, which is the highest found in the literature for recombinant strains and the highest achieved so far applying such strains under resting cells conditions

    Therapeutic Microbiology: The Role of Bifidobacterium breve as Food Supplement for the Prevention/Treatment of Paediatric Diseases

    Get PDF
    The human intestinal microbiota, establishing a symbiotic relationship with the host, plays a significant role for human health. It is also well known that a disease status is frequently characterized by a dysbiotic condition of the gut microbiota. A probiotic treatment can represent an alternative therapy for enteric disorders and human pathologies not apparently linked to the gastrointestinal tract. Among bifidobacteria, strains of the species Bifidobacterium breve are widely used in paediatrics. B. breve is the dominant species in the gut of breast-fed infants and it has also been isolated from human milk. It has antimicrobial activity against human pathogens, it does not possess transmissible antibiotic resistance traits, it is not cytotoxic and it has immuno-stimulating abilities. This review describes the applications of B. breve strains mainly for the prevention/treatment of paediatric pathologies. The target pathologies range from widespread gut diseases, including diarrhoea and infant colics, to celiac disease, obesity, allergic and neurological disorders. Moreover, B. breve strains are used for the prevention of side infections in preterm newborns and during antibiotic treatments or chemotherapy. With this documentation, we hope to increase knowledge on this species to boost the interest in the emerging discipline known as "therapeutic microbiology"

    L-lysine production at 65°C by auxotrophic-regulatory mutants of Bacillus stearothermophilus

    Get PDF
    The amino acid L-lysine was produced from auxotrophic-regulatory mutants ofBacillus stearothermophilus at a temperature of 60–65°C. One of the mutants (AEC 12 A5, S-(2-aminoethyl)-cysteiner, homoserine−), produced L-lysine at the concentration of 7.5 g/l in shaken flasks in minimal medium containing 5% glucose. Culture conditions for optimizing L-lysine production were not investigated. The aspartokinase activity of the wild strainB. stearothermophilus Zu 183 was inhibited by lysine alone and by threonine plus lysine. AEC resistant mutants showed an aspartokinase activity genetically desensitized to the feedback inhibition. Optimal temperature and pH of aspartokinase were 45°C and 9.5, respectively. The data provide significant evidence that mutants of the speciesB. stearothermophilus have a potential value for amino acid production

    Selection of Acetic Acid Bacterial Strains and Vinegar Production From Local Maltese Food Sources

    Get PDF
    This study investigates the isolation, identification, and fermentation performance of autochthonous acetic acid bacteria (AAB) from local niche habitats on the Island of Gozo (Malta) and their further use for vinegar production, employing local raw materials. The bacteria were isolated from grapevine berries and vinegar produced in the cottage industry. Following phenotype and genotype identification, the AAB were ascribed to the genera Acetobacter, Gluconobacter, and Komagataeibacter. A mixture of selected AAB was tested as an inoculum for vinegar production in bench fermenters, under different conditions and substrates, namely, grapes, honey, figs, onions, prickly pear, and tomatoes. The bench fermenters were operated under semi-continuous fermentation where working volumes were maintained by discharging and subsequent recharging accordingly to maintain the acidity in fermenters by adding 30-50 g/l of acetic acid for optimal Acetobacteraceae performance. Finally, the vinegar products obtained from the different substrates were evaluated for their quality, including organoleptic properties, which showed the superior quality of wood-treated vinegar samples with respect to neat vinegar samples

    Bifidobacterium xylocopae sp. nov. and Bifidobacterium aemilianum sp. nov., from the carpenter bee (Xylocopa violacea) digestive tract

    Get PDF
    Social bees harbor a community of gut mutualistic bacteria, among which bifidobacteria occupy an important niche. Recently, four novel species have been isolated from guts of different bumblebees, thus allowing to suppose that a core bifidobacterial population may be present in wild solitary bees. To date there is sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., this study is therefore focused on the isolation and characterization of bifidobacterial strains from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp. no new species have been detected whereas among Xylocopa isolates four strains (XV2, XV4, XV10, XV16) belonging to putative new species were found. Isolated strains are Gram-positive, lactate- and acetate-producing and possess the fructose-6-phosphate phosphoketolase enzyme. Full genome sequencing and genome annotation were performed for XV2 and XV10. Phylogenetic relationships were determined using partial and complete 16S rRNA sequences and hsp60 restriction analysis that confirmed the belonging of the new strains to Bifidobacterium genus and the relatedness of the strains XV2 and XV10 with XV16 and XV4, respectively. Phenotypic tests were performed for the proposed type strains, reference strains and their closest neighbor in the phylogenetic tree. The results support the proposal of two novel species Bifidobacterium xylocopae sp. nov. whose type strain is XV2 (=DSM 104955T = LMG 30142T), reference strain XV16 and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T = LMG 30143T), reference strain XV4

    Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between <it>Lactobacillus </it>spp. strains and gas-forming coliforms isolated from stools of colicky infants.</p> <p>Results</p> <p>Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for <it>Enterobacteriaceae</it>. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log<sub>10 </sub><it>vs </it>3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: <it>Escherichia coli</it>, <it>Klebsiella pneumoniae</it>, <it>Klebsiella oxytoca</it>, <it>Enterobacter aerogenes</it>, <it>Enterobacter cloacae </it>and <it>Enterococcus faecalis</it>. Then, 27 <it>Lactobacillus </it>strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. <it>Lactobacillus delbrueckii </it>subsp.<it>delbrueckii </it>DSM 20074 and <it>L. plantarum </it>MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity.</p> <p>Conclusions</p> <p>This study shows that two out of 27 strains of <it>Lactobacillus </it>examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate new researches to identify which <it>Lactobacillus </it>strains can improve colicky symptoms by acting on coliforms gut colonization.</p

    The probiotic Bifidobacterium breve B632 inhibited the growth of Enterobacteriaceae within colicky infant microbiota cultures

    Get PDF
    Infant colic is a common gastrointestinal disorder of newborns, mostly related to imbalances in the composition of gut microbiota and particularly to the presence of gas-producing coliforms and to lower levels of Bifidobacteria and Lactobacilli. Probiotics could help to contain this disturbance, with formulations consisting of Lactobacillus strains being the most utilized. In this work, the probiotic strain Bifidobacterium breve B632 that was specifically selected for its ability to inhibit gas-producing coliforms, was challenged against the Enterobacteriaceae within continuous cultures of microbiota from a 2-month-old colicky infant. As confirmed by RAPD-PCR fingerprinting, B. breve B632 persisted in probiotic-supplemented microbiota cultures, accounting for the 64% of Bifidobacteria at the steady state. The probiotic succeeded in inhibiting coliforms, since FISH and qPCR revealed that the amount of Enterobacteriaceae after 18 h of cultivation was 0.42 and 0.44 magnitude orders lower (P < 0.05) in probiotic-supplemented microbiota cultures than in the control ones. These results support the possibility to move to another level of study, that is, the administration of B. breve B632 to a cohort of colicky newborns, in order to observe the behavior of this strain in vivo and to validate its effect in colic treatment

    Biostimulants for Sustainable Management of Sport Turfgrass

    Get PDF
    Research on the efficacy of innovative, ecofriendly biostimulants in sport turf management is scarce, with less information available from open-field experiments, and even less pertaining to thatch control-related problems. The objective was to investigate the open-field effectiveness of a commercial product, EM-1, and two newly developed products, ExpA and ExpB, in improving both rhizosphere and turfgrass, Agrostis stoloniferous L., characteristics on a golf green. ExpA and ExpB, identical in microbial composition, were equally effective in significantly increasing chlorophyll synthesis and visual turf quality, as well as in resistance to tearing out, compared to the untreated control 56 days after treatment (DAT). EM-1 showed intermediate trends between the control and novel biostimulants. The inclusion of humic acids and mycorrhizal fungi to the microbial composition in ExpB significantly improved some rhizosphere properties 56 DAT relative to the control. Results on ExpB evidenced a significant decrease in the thatch layer thickness and fresh leaf weight, associated with a significant increase in the humus thickness, organic matter decomposition and evapotranspiration efficiency. An increased dry leaf biomass was also shown. ExpA and EM-1 showed either marginal or intermediate improvements relative to the control. ExpB represents a promising alternative to alleviate negative environmental impacts associated with turf maintenance-related activities

    Protective cultures against foodborne pathogens in a nitrite reduced fermented meat product

    Get PDF
    In the present work, a combined hurdle approach for fermented meat preservation was investigated. Challenge tests were performed in Chorizo sausage model using the maximum allowed NaNO2 amount (150 mg/kg), a reduced amount (75 mg/kg) and no nitrite, with and without protective cultures inoculation. Cocktail strains of L. monocytogenes and Salmonella spp. were used as indicator strains. In a nitrite reduced sausage model, L. monocytogenes growing trend did not significantly change (p &gt; 0.05) when compared with that containing higher nitrite concentration (150 mg/kg NaNO2). The addition of L. plantarum PSC20 significantly lowered L. monocytogenes growth when compared with control batches without PCS20 (p &lt; 0.05), obtaining 3.84 log cfu/g and 2.62 log cfu/g lower counts in the batches with 150 mg/kg NaNO2 and 75 mg/kg NaNO2 respectively. None of the protective cultures demonstrated in situ antagonistic activity against Salmonella spp. This work pointed out that the reduction of nitrites with the combined use of a protective culture could be a feasible approach to control L. monocytogenes growth in fermented meat foods

    Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment

    Get PDF
    Abstract BACKGROUND: Bifidobacterium represents one of the largest genus within the Actinobacteria, and includes at present 32 species. These species share a high sequence homology of 16S rDNA and several molecular techniques already applied to discriminate among them give ambiguous results.The slightly higher variability of the hsp60 gene sequences with respect to the 16S rRNA sequences offers better opportunities to design or develop molecular assays, allowing identification and differentiation of closely related species. hsp60 can be considered an excellent additional marker for inferring the taxonomy of the members of Bifidobacterium genus. RESULTS: This work illustrates a simple and cheap molecular tool for the identification of Bifidobacterium species. The hsp60 universal primers were used in a simple PCR procedure for the direct amplification of 590 bp of the hsp60 sequence. The in silico restriction analysis of bifidobacterial hsp60 partial sequences allowed the identification of a single endonuclease (HaeIII) able to provide different PCR-restriction fragment length polymorphism (RFLP) patterns in the Bifidobacterium spp. type strains evaluated. The electrophoretic analyses allowed to confirm the different RFLP patterns. CONCLUSIONS: The developed PCR-RFLP technique resulted in efficient discrimination of the tested species and subspecies and allowed the construction of a dichotomous key in order to differentiate the most widely distributed Bifidobacterium species as well as the subspecies belonging to B. pseudolongum and B. animalis
    • …
    corecore