55 research outputs found

    UVB radiation induced effects on cells studied by FTIR spectroscopy

    Full text link
    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments

    Environmental Asbestotic Pleural Plaques in Northeast Corsica: Correlations with Airborne and Pleural Mineralogic Analysis

    Get PDF
    We report a prevalence study of environmental pleural plaques in subjects over 50 years old from the northeastern Corsican village of Murato, built on asbestos surface deposits. The percentage of plaques was 41%, versus 7.5% in the control village of Vezzani. Although surface deposits contain both chrysotile and tremolite, airborne pollution and asbestos lung burden of exposed inhabitants consist essentially of tremolite as assessed by transmission electron microscopy (TEM). However, TEM analysis of the parietal pleura of three animals bred in exposed areas showed a predominance of short fibers of chrysotile. The respective roles of tremolite and chrysotile in inducing pleural plaques in Corsica should thus be considered.—Environ Health Perspect 102(Suppl 5):251–252 (1994

    A 50 l CYGNO prototype overground characterization

    Get PDF
    The nature of dark matter is still unknown and an experimental program to look for dark matter particles in our Galaxy should extend its sensitivity to light particles in the GeV mass range and exploit the directional information of the DM particle motion (Vahsen et al. in CYGNUS: feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, arXiv:2008.12587, 2020). The CYGNO project is studying a gaseous time projection chamber operated at atmospheric pressure with a Gas Electron Multiplier (Sauli in Nucl Instrum Meth A 386:531, https://doi.org/10.1016/S0168-9002(96)01172-2, 1997) amplification and with an optical readout as a promising technology for light dark matter and directional searches. In this paper we describe the operation of a 50 l prototype named LIME (Long Imaging ModulE) in an overground location at Laboratori Nazionali di Frascati (LNF) of INFN. This prototype employs the technology under study for the 1 cubic meter CYGNO demonstrator to be installed at the Laboratori Nazionali del Gran Sasso (LNGS) (Amaro et al. in Instruments 2022, 6(1), https://www.mdpi.com/2410-390X/6/1/6, 2022). We report the characterization of LIME with photon sources in the energy range from few keV to several tens of keV to understand the performance of the energy reconstruction of the emitted electron. We achieved a low energy threshold of few keV and an energy resolution over the whole energy range of 10–20%, while operating the detector for several weeks continuously with very high operational efficiency. The energy spectrum of the reconstructed electrons is then reported and will be the basis to identify radio-contaminants of the LIME materials to be removed for future CYGNO detectors

    Charge amplification in low pressure CF4:SF6:He mixtures with a multi-mesh ThGEM for directional dark matter searches

    Get PDF
    The CYGNO collaboration is developing next generation directional Dark Matter (DM) detection experiments, using gaseous Time Projection Chambers (TPCs), as a robust method for identifying Weakly Interacting Massive Particles (WIMPs) below the Neutrino Fog. SF6 is potentially ideal for this since it provides a high fluorine content, enhancing sensitivity to spin-dependent interactions and, as a Negative Ion Drift (NID) gas, reduces charge diffusion leading to improved positional resolution. CF4, although not a NID gas, has also been identified as a favourable gas target as it provides a scintillation signal which can be used for a complimentary light/charge readout approach. These gases can operate at low pressures to elongate Nuclear Recoil (NR) tracks and facilitate directional measurements. In principle, He could be added to low pressure SF6/CF4 without significant detriment to the length of 16S, 12C, and 19F recoils. This would improve the target mass, sensitivity to lower WIMP masses, and offer the possibility of atmospheric operation; potentially reducing the cost of a containment vessel. In this article, we present gas gain and energy resolution measurements, taken with a Multi-Mesh Thick Gaseous Electron Multiplier (MMThGEM), in low pressure SF6 and CF4:SF6 mixtures following the addition of He. We find that the CF4:SF6:He mixtures tested were able to produce gas gains on the order of 104 up to a total pressure of 100 Torr. These results demonstrate an order of magnitude improvement [1] in charge amplification in NID gas mixtures with a He component

    Data handling of CYGNO experiment using INFN-Cloud solution

    Get PDF
    The INFN Cloud project was launched at the beginning of 2020, aiming to build a distributed Cloud infrastructure and provide advanced services for the INFN scientific communities. A Platform as a Service (PaaS) was created inside INFN Cloud that allows the experiments to develop and access resources as a Software as a Service (SaaS), and CYGNO is the betatester of this system. The aim of the CYGNO experiment is to realize a large gaseous Time Projection Chamber based on the optical readout of the photons produced in the avalanche multiplication of ionization electrons in a GEM stack. To this extent, CYGNO exploits the progress in commercial scientific Active Pixel Sensors based on Scientific CMOS for Dark Matter search and Solar Neutrino studies. CYGNO, like many other astroparticle experiments, requires a computing model to acquire, store, simulate and analyze data typically far from High Energy Physics (HEP) experiments. Indeed, astroparticle experiments are typically characterized by being less demanding of computing resources with respect to HEP ones but have to deal with unique and unrepeatable data, sometimes collected in extreme conditions, with extensive use of templates and montecarlo, and are often re-calibrated and reconstructed many times for a given data set. Moreover, the varieties and the scale of computing models and requirements are extremely large. In this scenario, the Cloud infrastructure with standardized and optimized services offered to the scientific community could be a useful solution able to match the requirements of many small/medium size experiments. In this work, we will present the CYGNO computing model based on the INFN cloud infrastructure where the experiment software, easily extendible to similar experiments to similar applications on other similar experiments, provides tools as a service to store, archive, analyze, and simulate data

    On Field Gesture-Based Robot-to-Robot Communication with NAO Soccer Players

    No full text
    Gesture-based communication is commonly used by soccer players during matches to exchange information with teammates. Among the possible forms of gesture-based interaction, hand signals are the most used. In this paper, we present a deep learning method for recognizing robot-to-robot hand signals exchanged during a soccer game. A neural network for estimating human body, face, hands, and foot position has been adapted for the application in the robot soccer scenario. Quantitative experiments carried out on NAO V6 robots demonstrate the effectiveness of the proposed approach. Source code and data used in this work are made publicly available for the community
    • 

    corecore