104 research outputs found

    Instanton size distribution in O(3)

    Full text link
    We present calculations of the size distribution of instantons in the 2d O(3) non-linear sigma-model, and briefly discuss the effects cooling has upon the configurations and the topological objects. (This preprint is also available via anonymous ftp to suna.amtp.liv.ac.uk in /pub/pss/ as instdist.uue.)Comment: 17 pages, LaTeX, needs cite.sty (appended), with appended uuencoded compressed tarfile of PostScript figures, Liverpool preprint LTH-33

    Nonperturbative hyperfine contribution to the b1b_1 and h1h_1 meson masses

    Get PDF
    Due to the nonperturbative contribution to the hyperfine splitting the mass of the n1P1n^1P_1 state is strongly correlated with the center of gravity Mcog(n3PJ)M_{\rm cog}(n^3P_J) of the n3PJn^3P_J multiplet: M(n1P1)M(n^1P_1) is less than Mcog(n3PJ)M_{\rm cog}(n^3P_J) by about 40 MeV (20 MeV) for the 1P (2P) state. For b1(1235)b_1(1235) the agreement with experiment is reached only if a0(980)a_0(980) belongs to the 13PJ1^3P_J multiplet. The predicted mass of b1(21P1)b_1(2^1P_1) is 1620\approx 1620 MeV. For the isoscalar meson a correlation between the mass of h1h_1(1170) (h1(1380))(h_1(1380)) and Mcog(13PJ)M_{cog}(1^3P_J) composed from light (strange) quarks also takes place.Comment: 22 pages RevTe

    Monopole clusters, center vortices, and confinement in a Z(2) gauge-Higgs system

    Full text link
    We propose to use the different kinds of vacua of the gauge theories coupled to matter as a laboratory to test confinement ideas of pure Yang-Mills theories. In particular, the very poor overlap of the Wilson loop with the broken string states supports the 't Hooft and Mandelstam confinement criteria. However in the Z(2) gauge-Higgs model we use as a guide we find that the condensation of monopoles and center vortices is a necessary, but not sufficient condition for confinement.Comment: 13 pages, 6 figures, minor changes, version to be published on Phys. Rev.

    Universality, vortices and confinement: modified SO(3) lattice gauge theory at non-zero temperature

    Full text link
    We investigate the adjoint SU(2) lattice gauge theory in 3+1 dimensions with the Wilson plaquette action modified by a Z(2) monopole suppression term. For the zero-twist sector we report indications for the existence of a finite temperature effect decoupled from the unphysical bulk transitions.Comment: 17 pages, 10 figures. Some figures and text added. To appear on Phys. Rev.

    Heavy-quark condensate at zero- and nonzero temperatures for various forms of the short-distance potential

    Get PDF
    With the use of the world-line formalism, the heavy-quark condensate in the SU(N)-QCD is evaluated for the cases when the next-to-1/r term in the quark-antiquark potential at short distances is either quadratic, or linear. In the former case, the standard QCD-sum-rules result is reproduced, while the latter result is a novel one. Explicitly, it is UV-finite only in less than four dimensions. This fact excludes a possibility to have, in four dimensions, very short strings (whose length has the scale of the lattice spacing), and consequently the short-range linear potential (if it exists) cannot violate the OPE. In any number of dimensions, the obtained novel expression for the quark condensate depends on the string tension at short distances, rather than on the gluon condensate, and grows linearly with the number of colors in the same way as the standard QCD-sum-rules expression. The use of the world-line formalism enables one to generalize further both results to the case of finite temperatures. A generalization of the QCD-sum-rules expression to the case of an arbitrary number of space-time dimensions is also obtained and is shown to be UV-finite, provided this number is smaller than six.Comment: 11 pages, no figure

    Jet quenching parameter \hat q in the stochastic QCD vacuum with Landau damping

    Full text link
    We argue that the radiative energy loss of a parton traversing the quark-gluon plasma is determined by Landau damping of soft modes in the plasma. Using this idea, we calculate the jet quenching parameter of a gluon. The calculation is done in SU(3) quenched QCD within the stochastic vacuum model. At the LHC-relevant temperatures, the result depends on the gluon condensate, the vacuum correlation length, and the gluon Debye mass. Numerically, when the temperature varies from T=T_c to T=900 MeV, the jet quenching parameter rises from \hat q=0 to approximately 1.8 GeV^2/fm. We compare our results with the predictions of perturbative QCD and other calculations.Comment: 20 pages, 6 figures, discussions and references added; final version to appear in Eur. Phys. J.

    Analytic Methods in Nonperturbative QCD

    Full text link
    Recently developed analytic methods in the framework of the Field Correlator Method are reviewed in this series of four lectures and results of calculations are compared to lattice data and experiment. Recent lattice data demonstrating the Casimir scaling of static quark interaction strongly support the FCM and leave very little space for all other theoretical models, e.g. instanton gas/liquid model. Results of calculations for mesons, baryons, quark-gluon plasma and phase transition temperature demonstrate that new analytic methods are a powerful tool of nonperturbative QCD along with lattice simulations.Comment: LaTeX, 34 pages; Lectures given at the 13th Indian-Summer School "Understanding the Structure of Hadrons", August 28 - September 1, 2000, Prague, Czech Republi

    The monopole mass in the three-dimensional Georgi-Glashow model

    Get PDF
    We study the three-dimensional Georgi-Glashow model to demonstrate how magnetic monopoles can be studied fully non-perturbatively in lattice Monte Carlo simulations, without any assumptions about the smoothness of the field configurations. We examine the apparent contradiction between the conjectured analytic connection of the `broken' and `symmetric' phases, and the interpretation of the mass (i.e., the free energy) of the fully quantised 't Hooft-Polyakov monopole as an order parameter to distinguish the phases. We use Monte Carlo simulations to measure the monopole free energy and its first derivative with respect to the scalar mass. On small volumes we compare this to semi-classical predictions for the monopole. On large volumes we show that the free energy is screened to zero, signalling the formation of a confining monopole condensate. This screening does not allow the monopole mass to be interpreted as an order parameter, resolving the paradox.Comment: 12 pages, 7 figures, uses revtex. Minor changes made to the text to match with the published version at http://link.aps.org/abstract/PRD/v65/e12500

    Fixed twist dynamics of SO(3) gauge theory

    Get PDF
    We perform a throughout study of 3+1 dim. SO(3) LGT for any fixed-twist background. We concentrate in particular on the physically significant trivial and 1-twist sectors. Introducing a Z(2) monopole chemical potential the 1st order bulk transition is moved down in the strong coupling region and weakened to 2nd order in the 4-dim Ising model universality class. In this extended phase diagram we gain access to a confined phase in every fixed twist sector of the theory. The Pisa disorder operator is employed together with the Polyakov loop to study the confinement-deconfinement transition in each sector. Due to the specific properties of both operators, most results can be used to gain insight in the ergodic theory, where all twist sectors should be summed upon. An explicit mapping of each fixed twist theory to effective positive plaquette models with fixed twisted boundary conditions is applied to better establish their properties in the different phases.Comment: 20 pages, 11 Figures. Minor changes in text and figures, to appear in Eur.Phys.J.

    Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering

    Get PDF
    We compute the chromo-field distributions of static color-dipoles in the fundamental and adjoint representation of SU(Nc) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model which leads to confinement of the color-charges in the dipole via a string of color-fields. We compute the energy stored in the confining string and use low-energy theorems to show consistency with the static quark-antiquark potential. We generalize Meggiolaro's analytic continuation from parton-parton to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle to calculate S-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the S-matrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes theorem, old Appendix A -> Sec.3, several references added
    corecore