2,839 research outputs found

    Interference of dibutylphthalate on human prostate cell viability

    Get PDF
    Dibutylphthalate (DBP) is an environmental pollutant widely used as plasticizer in a variety of industrial applications worldwide. This agent can be found in personal-care products, children's toy, pharmaceuticals, food products. Exposure to DBP can occur via ingestion and inhalation as well as intravenous or skin contact. DBP belongs to the family of endocrine disrupting chemicals (EDCs) and its effects on reproductive system were demonstrated both in vivo and in vitro. In the present study we evaluated the effects of DBP on human prostate adenocarcinoma epithelial cells (LNCaP) in order to highlight xenoestrogens influence on human prostate. Moreover, we have compared DBP effects with 17β-estradiol action in order to investigate possible mimetical behaviour. We have assessed the effects of both compounds on the cell viability. After then, we have evaluated the expression of genes and proteins involved in cell cycle regulation. Furthermore, we have observed the expression and the cell localization of estrogen (ERs) and androgen (AR) receptors. In conclusion, we have demonstrated that DBP interacts with estrogen hormonal receptor pathway but differently from E2. DBP alters the normal gland physiology and it is involved in the deregulation of prostate cell cycle

    Alkyphenol exposure alters steroidogenesis in male lizard podarcis siculus

    Get PDF
    Background: Nonylphenol (NP) and Octylphenol (OP) are persistent and non-biodegradable environmental contaminants classified as endocrine disruptor chemicals (EDCs). These compounds are widely used in several industrial applications and present estrogen-like properties, which have extensively been studied in aquatic organisms. The present study aimed to verify the interference of these compounds alone, and in mixture, on the reproductive cycle of the male terrestrial vertebrate Podarcis siculus, focusing mainly on the steroidogenesis process. Methods: Male lizards have been treated with different injections of both NP and OP alone and in mixture, and evaluation has been carried out using a histological approach. Results: Results obtained showed that both substances are able to alter both testis histology and localization of key steroidogenic enzymes, such as 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and P450 aromatase. Moreover, OP exerts a preponderant effect, and the P450 aromatase represents the major target of both chemicals. Conclusions: In conclusion, NP and OP inhibit steroidogenesis, which in turn may reduce the reproductive capacity of the specimens

    Perfect secrecy cryptography via mixing of chaotic waves in irreversible time-varying silicon chips

    Get PDF
    A.D.F. acknowledges support from EPSRC (EP/L017008/1). A.F. acknowledges support from KAUST (OSR-2016-CRG5-2995). The research data underpinning this publication can be accessed at https://doi.org/10.17630/19156fc3-cc1f-4ee3-b553-f02042cf89a0.Protecting confidential data is a major worldwide challenge. Classical cryptography is fast and scalable, but its broken by quantum algorithms. Quantum cryptography is unclonable, but requires quantum installations that are more expensive, slower, and less scalable than classical optical networks. Here we show a perfect secrecy cryptography in classical optical channels. The system exploits correlated chaotic wavepackets, which are mixed in inexpensive and CMOS compatible silicon chips. The chips can generate 0:1 Tbit of different keys for every mm of length of the input channel, and require the transmission of an amount of data that can be as small as 1/1000 of the message’s length. We discuss the security of this protocol for an attacker with unlimited technological power, and who can access the system copying any of its part, including the chips. The second law of thermodynamics and the exponential sensitivity of chaos unconditionally protect this scheme against any possible attack.Publisher PDFPeer reviewe

    Neutron star radius-To-mass ratio from partial accretion disk occultation as measured through fe kα line profiles

    Get PDF
    We present a new method to measure the radius-To-mass ratio (R/M) of weakly magnetic, disk-Accreting neutron stars by exploiting the occultation of parts of the inner disk by the star itself. This occultation imprints characteristic features on the X-ray line profile that are unique and are expected to be present in low-mass X-ray binary systems seen under inclinations higher than ∼65°. We analyze a Nuclear Spectroscopic Telescope Array observation of a good candidate system, 4U 1636-53, and find that X-ray spectra from current instrumentation are unlikely to single out the occultation features owing to insufficient signal-To-noise. Based on an extensive set of simulations we show that large-Area X-ray detectors of the future generation could measure R/M to ∼2 ÷ 3% precision over a range of inclinations. Such is the precision in radius determination required to derive tight constraints on the equation of state of ultradense matter and it represents the goal that other methods also aim to achieve in the future

    The nucleolar protein nucleophosmin is physiologically secreted by endothelial cells in response to stress exerting proangiogenic activity both in vitro and in vivo

    Get PDF
    Nucleophosmin (NPM), a nucleolar multifunctional phosphoprotein, acts as a stress sensor in different cell types. NPM can be actively secreted by inflammatory cells, however its biology on endothelium remains unexplored. In this study, we show for the first time that NPM is secreted by human vein endothelial cells (HUVEC) in the early response to serum deprivation and that NPM acts as a pro-inflammatory and angiogenic molecule both in vitro and in vivo. Accordingly, 24 h of serum starvation condition induced NPM relocalization from the nucleus to cytoplasm. Interestingly, NPM was increasingly excreted in HUVEC-derived conditioned media in a time dependent fashion upon stress conditions up to 24 h. The secretion of NPM was unrelated to cell necrosis within 24 h. The treatment with exogenous and recombinant NPM (rNPM) enhanced migration as well as the Intercellular Adhesion Molecule 1 (ICAM-1) but not Vascular cell adhesion protein 1 (VCAM-1) expression and it did not affect cell proliferation. Notably, in vitro tube formation by Matrigel assay was significantly increased in HUVEC treated with rNPM compared to controls. This result was confirmed by the in vivo injection of Matrigel plug assay upon stimulation with rNPM, displaying significant enhanced number of functional capillaries in the plugs. The stimulation with rNPM in HUVEC was also associated to the increased expression of master genes regulating angiogenesis and migration, including Vascular Endothelial Growth Factor-A (VEGF-A), Hepatocyte Growth Factor (HGF), Stromal derived factor-1 (SDF-1), Fibroblast growth factor-2 (FGF-2), Platelet Derived Growth Factor-B (PDGF-B), and Matrix metallopeptidase 9 (MMP9). Our study demonstrates for the first time that NPM is physiologically secreted by somatic cells under stress condition and in the absence of cell necrosis. The analysis of the biological effects induced by NPM mainly related to a pro-angiogenic and inflammatory activity might suggest an important autocrine/paracrine role for NPM in the regulation of both phenomena

    Dihydrophenanthrenes from a sicilian accession of himantoglossum robertianum (Loisel.) P. Delforge showed antioxidant, antimicrobial, and antiproliferative activities

    Get PDF
    The peculiar aspect that emerges from the study of Orchidaceae is the presence of various molecules, which are particularly interesting for pharmaceutical chemistry due to their wide range of biological resources. The aim of our study was to investigate the properties of two dihydrophenanthrenes, isolated, for the first time, from Himantoglossum robertianum (Loisel.) P. Delforge (Orchidaceae) bulbs and roots. Chemical and spectroscopic study of the bulbs and roots of Himantoglossum robertianum (Loisel.) P. Delforge resulted in the isolation of two known dihydrophenanthrenes—loroglossol and hircinol—never isolated from this plant species. The structures were evaluated based on1H-NMR,13C-NMR, and two-dimensional spectra, and by comparison with the literature. These two molecules have been tested for their possible antioxidant, antimicrobial, antiproliferative, and proapoptotic activities. In particular, it has been shown that these molecules cause an increase in the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) in polymorphonuclear leukocytes (PMN); show antimicrobial activity against Escherichia coli and Staphylococcus aureus, and have anti-proliferative effects on gastric cancer cell lines, inducing apoptosis effects. Therefore, these two molecules could be considered promising candidates for pharmaceutical and nutraceutical preparations

    Enhanced nonlinear refractive index in ε-near-zero materials

    Get PDF
    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n2) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.Publisher PDFPeer reviewe

    Biomarkers changes after neoadjuvant chemotherapy in breast cancer: A seven-year single institution experience

    Get PDF
    The adoption of neoadjuvant chemotherapy (NACT) for breast cancer (BC) is increasing. The need to repeat the biomarkers on a residual tumor after NACT is still a matter of debate. We verified estrogen receptors (ER), progesterone receptors (PR), Ki67 and human epidermal growth factor receptor 2 (HER2) status changes impact in a retrospective monocentric series of 265 BCs undergoing NACT. All biomarkers changed with an overall tendency toward a reduced expression. Changes in PR and Ki67 were statistically significant (p = 0.001). Ki67 changed in 114/265 (43.0%) cases, PR in 44/265 (16.6%), ER in 31/265 (11.7%) and HER2 in 26/265 (9.8%). Overall, intrinsic subtype changed in 72/265 (27.2%) cases after NACT, and 10/265 (3.8%) cases switched to a different adjuvant therapy accordingly. Luminal subtypes changed most frequently (66/175; 31.7%) but with less impact on therapy (5/175; 2.8%). Only 3 of 58 triple-negative BCs (5.2%) changed their intrinsic subtype, but all of them switched treatment. No correlation was found between intrinsic subtype changes and clinicopathological features. To conclude, biomarkers changes with prognostic implications occurred in all BC intrinsic subtypes, albeit they impacted therapy mostly in HER2 negative and/or hormone receptors negative BCs. Biomarkers retesting after NACT is important to improve both tailored adjuvant therapies and prognostication of patients
    • …
    corecore