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Perfect secrecy cryptography via mixing of chaotic
waves in irreversible time-varying silicon chips

A. Di Falco® "4, V. Mazzone?*4, A. Cruz3 & A. Fratalocchi®*

Protecting confidential data is a major worldwide challenge. Classical cryptography is fast and
scalable, but is broken by quantum algorithms. Quantum cryptography is unclonable, but
requires quantum installations that are more expensive, slower, and less scalable than
classical optical networks. Here we show a perfect secrecy cryptography in classical optical
channels. The system exploits correlated chaotic wavepackets, which are mixed in inex-
pensive and CMOS compatible silicon chips. The chips can generate 0.1 Tbit of different keys
for every mm of length of the input channel, and require the transmission of an amount of
data that can be as small as 1/1000 of the message's length. We discuss the security of this
protocol for an attacker with unlimited technological power, and who can access the system
copying any of its part, including the chips. The second law of thermodynamics and the
exponential sensitivity of chaos unconditionally protect this scheme against any possible
attack.
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ith an information society that transfers an increas-

ingly large amount of personal data over public

channels, information security is an emerging world-
wide challengel>2. Conventional cryptographic schemes based on
data encryption standard (DES), advanced encryption standard
(AES), and Rivest, Shamir, and Adleman (RSA) encode messages
with public and private keys of short length. The main advantage
of these algorithms is speed, and the main disadvantage is their
security, which relies on computational and provable security
arguments and not on unconditional proofs. A major threat lies
in the development of quantum computers, which are predicted
to crack any of these ciphers in a short period of time>.

A perfect secrecy cryptography, known as a one-time pad
(OTP) was invented at the time of the telegraph and then
patented by Vernam#-%. The Vernam cipher encodes the message
via a bitwise XOR operation with a random key that is as long as
the text to be transmitted, never reused in whole or in part, and
kept secret. Shannon demonstrated that this scheme, properly
implemented, is unbreakable and does not offer any information
to an attacker, except the maximum length of the message®.
Almost a century later, despite its proven absolute security, the
OTP is still not adopted for lack of a practical and secure way for
users to exchange the key.

Since the 1980s, research efforts have been dedicated towards
solving this problem with point-to-point quantum key distribu-
tion (QKD) algorithms, which leverage on the unclonability of
single photons’. While the progress of QKD in the past decades
has been enormous®-12, there are still critical challenges derived
by the limits of quantum communications!3-1°. Due to the
impossibility of amplifying single photons?, quantum networks
are currently unable to scale up globally; their data transfer is
considerably slower than classical optical communications, which

already count with hundreds of high-bandwidth intercontinental
lines, communication speed close to the light limit, and massive
investments for the next years21-26,

Here we develop a physical realization of the OTP that
is compatible with the existing optical communication
infrastructure and offers unconditional security in the key
distribution.

Results
Protocol scheme of Vernam cipher on classical channels. It is
well known that chaos generates time varying signals that are
mathematically unpredictable?’-28. This originates from the sen-
sitivity to input conditions: two nearby states x(t =0) and
x'(0) =x(0) + ¢, even when e — 0, always originate exponen-
tially diverging trajectories A(t) = |x(¢) — x'(¢)| ~ e, with y the
largest Lyapunov coefficient?’. By leveraging on this property, we
show that it is possible to create a bidirectional communication
channel for securely exchanging random keys of arbitrary length.
In this system (Fig. 1a), the two users—Alice and Bob—possess
two chips that generate chaotic light states that are transmitted on
a public classical optical channel. Each light state, indicated as A,
for Alice and B,, for Bob, is a random superposition of optical
waves2? at different frequencies:

Zanmcosw t+ @) ,—anmcosw t+ Vo)

(1)

with uncorrelated random amplitudes a,,,, b,,, and phases
®> V- These states are generated from the chaotic scattering
of broadband pulses with different frequencies w, ..., w,,, and
diverse input conditions n and »’ (position, angle, polarization,
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Fig. 1 Protocol scheme for perfect secrecy key generation on classical channels. a Communication setup on a classical public optical channel with the
users (Alice and Bob) and attacker (Eve). Alice and Bob possess two different chips that generate chaotic light states A, and B,,. b Communication and key

generation steps: Alice and Bob launch broadband pulses from their sides and transmit different chaotic states A,,

B,,, always measuring correlated mixed

chaotic states when Eve does not actively interfere on the channel with additional states E,. States A, and B, are independently randomly chosen by Alice
and Bob. At the end of the transmission, Alice and Bob generate a key from the sequence of overlapping repeated sequences with the adaptive high boost
(AHB) transform. ¢ Encryption and decryption scheme via bitwise XOR between the text and the generated key.
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time modulation,...) arbitrarily chosen by Alice and Bob. Alice
and Bob’s pulses are not required to be identical: their
differences constitute the main source of uncertainty and set
the desired communication bit error rate (BER) in the
communication. The scattering system satisfies the following
four conditions: (1) the scattering process inside each chip is
fully chaotic3%: any launching condition follows a chaotic
dynamics; (2) Alice and Bob’s chips are in thermodynamic
equilibrium with the environment, with no structural change
appreciable for light propagation during the communication of
each state; (3) any modification to the distribution of scatterers
leads to a new chaotic system with exponentially diverging
trajectories with respect to the previous one; (4) the chips are
structurally modified in time before and after each commu-
nication by two physical irreversible processes (e.g., deforma-
tions, addition of scatterers, etc.), chosen and applied
independently by Alice and Bob, creating a new chaotic
scattering system in which all trajectories are exponentially
different from the previous one.

The use of static light scatterers in information security is
introduced in ref. 3! and offers computational and probable
security in both authentication problems and cryptographic key
generation, providing advantages over electronic schemes in
terms of volumetric physical data storage versus standard
electronic databases32~41. The security of schemes based on
complex scattering structures relies on two conditions: (i) the
physical scattering object is kept secret to an adversary, (ii) the
assumption that this structure cannot be cloned. These
arguments do not offer unconditional security and are subject
to the same security concerns of electronic schemes. While
recent work demonstrated that it is indeed experimentally
possible to clone a physically unclonable function*?, perfect
secrecy requires proving the system security in the limit where
the adversary accesses the system before or after the commu-
nication, copying all the system’s parts. In this work, as we are
discussing the limit of perfect secrecy, we remove conditions
(i)-ii) and we consider an adversary with the technology to
clone any type of scatterer.

During each step of the communication, Alice and Bob
randomly choose an input condition # and #’, respectively, send
light signals, and measure the output (Fig. 1b). After Alice and
Bob choose randomly either to keep the launching condition or to
change it, the process is then repeated.

Due to the reciprocity*> of the communication network
connecting Alice and Bob, if Eve does not perform active
eavesdropping, the users measure identical optical observables
(intensity, power density spectra (PDS), etc.). For instance, when
Alice sends a chaotic wavepacket A, to Bob, he measures an

optical observable, for example, the intensity |A, @ B, |’
associated with the combined light state A, @ B, (@ is the
operator that combines the states after the propagation over the
channel). When Alice measures the output at her end, she
measures the reciprocal state B, & A, with an identical
observable |A, @ B,|* = |B, ® A,|*.

At the conclusion of the sequence, Alice and Bob communicate
on the public line all cases of the acquired data that did not
change, extracting an OTP key from overlapping repeated
sequences. The key is generated by converting the exchanged
intensities or PDS into binary sequences with the adaptive high
boost (AHB) technique*. The key is then used at each user side
to encode and decode data via bitwise XOR, following the
Vernam cipher (Fig. 1c).

The communication protocol described in Fig. 1 can be regarded
as a classical version of the original BB84 QKD scheme developed
by Bennett and Brassard®’, in which the scatterers act as generator

of random states, and the reciprocal communication line provides
correlated measured states to the users Alice and Bob.

At variance with classical schemes based on complex
scatterers?®-41, the protocol presented here does not require first
encounter or initial secure communication among the users
(apart from authentication), thus providing a classical alternative
to QKD.

In the quantum limit, when a user (say Bob) launches a single
photon in the chip, the receiver (Alice) measures a photon
emerging at a random position from the chip. If Alice injects the
photon back in the same scattering channel, the reciprocity
theorem of quantum mechanics* guarantees that Bob measures
the emerging photon in the same input channel he originally
used. This process shares some similarities to the quantum
BB84 scheme, with scattering channels playing the role of random
polarization states. However, there are also differences. For the
users to exchange the same sequence of bits, they need to initially
agree on a common dictionary that associates the same string of
bit to correlated input-output positions in Alice and Bob’s chips.
This operation is not required in the classical limit (as the users
measure the outcome of large ensemble of photons on all
channels) and in the BB84 scheme.

Perfect secrecy of the cipher. The Vernam cipher has the perfect
secret property if: (i) the key exchanged is as long as the message,
(ii) each key is used only once and is uncorrelated to the new one,
and (iii) the key is known only by the users. The scheme of Fig. 1a
exchanges keys of arbitrary length on a classical optical channel at
full speed. It therefore offers a viable implementation of the first
requirement.

The covariance matrix K,, = (A,A,) of the correlation
among Alice chaotic wavepackets, with (...) denoting averaging
over amplitudes and phases, is a delta function:

K, = <Z A Qo / dt cos(w,,t + ¢,,,) cos(w,,t + ¢n,m,)>, 2)

= 031 6nn’7

with 02 = K,,,. Equation (2) arises from the fact that amplitudes
are uncorrelated, with (a,,a,,,,) = 0 for n # n’ and m = m’. The
same condition holds at Bob’s end, with B,,, = (B,B,,) = x*5,,,,-
This implies that both Alice and Bob states are uncorrelated, and
keys generated from combined states A, @ B, are also uncorre-
lated. Therefore, the protocol of Fig. 1 satisfies the second
requirement.

Perfect secrecy of the key distribution. We now consider the
ideal case (Kerckhoff principle) in which the system falls in the
hands of the adversary, who knows all the details of the enci-
phering/deciphering process and has access to the ciphertext. The
only unknowns are the key and the input conditions (including
the arbitrary chosen transformations) of the users.

As the system is classical, Eve can store all the signals launched
by Alice and Bob and then she can attempt a search on each
user’s chip for the input conditions that generated the states she
measured. Once Eve knows the input conditions, she can launch
the same states and recreate the key.

The second law of thermodynamics prevents this attack. Every
time Alice and Bob change the chip with an irreversible process,
they increase the total entropy of the system and the environ-
ment, creating new chaotic structures exponentially different
from the ones used in the communication (conditions 3 and 4). If
Eve accesses the system, it is impossible to recreate the initial
chips and to perform any search, as this requires reverting the
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transformation of Alice and Bob with an entropy decrease, thus
violating the second law.

Another possibility is to make an identical copy of the system
in all its parts, and to attempt the search at the next
communication. This is a major vulnerability of all current
classical cryptographic schemes. The system presented in this
work, on the contrary and due to the use of irreversible
thermodynamic transformations, is protected by such attack.
The search task, in fact, requires Eve to generate the same chaotic
scatterers as of Alice and Bob’s, so that their transformations are
cloned prior to the communication. As the chips are in
equilibrium with the environment (point 2), this task requires
replicating the surroundings of Alice and Bob’s chips. This
condition is essential for enabling Eve’s copied chips to reach the
same equilibrium state of the original chips of Alice and Bob. The
second law of thermodynamics makes this operation not
physically possible. Eve, in fact, cannot replicate the exact time
at which Alice and Bob perform their transformations. If Eve does
the transformation after Alice or Bob, the environment will be
different, as it existed at least one irreversible transformation in
time (the one of Alice or Bob) that increased its entropy, and vice
versa if Eve performs the transformation before the users. It will
be therefore impossible for Eve to clone the transformation of
Alice and Bob. Due to points 3 and 4, Eve will generate new
chaotic scatters that are exponentially different from the ones that
Alice or Bob are using and, as such, useless.

This leaves to the attacker just one possibility: extract the key
from the information available on the system.

In any possible attack, the data available to an attacker are the
observables related to the chaotic wavepackets A, and B,
transmitted. Eve can measure these states and attempt to
reconstruct Alice and Bob’s key. In the analysis below, we
demonstrate that the outcome is always a key in which each bit
has 50% probability of being correct and 50% probability of being
wrong, regardless of the type of attack. This implies perfect
secrecy®: the a posteriori probabilities of Eve’s key representing
Alice and Bob’s key is identically the same as the a priori
probability of guessing Alice and Bob’s key before the
interception.

In the scheme of Fig. 1a, the solely experimental observables
are noninstantaneous quantities in frequency or time, such as
PDS or intensities, while instantaneous values of amplitude and
phase are of traveling photons, which are not observable. This
limitation also applies to interferometric detection and time
gating?’~%%, which require periodic signals in time or precise
knowledge in advance of the pulse’s properties. To measure the
instantaneous state of a randomly generated chaotic wavepacket
A, or B, that is never replicated, the only possibility is to
accelerate electrons at relativistic speed in order to follow the
dynamics of photons, but this requires an infinite amount of

energy?.

Security against time-domain attacks. We analyzed the limit in
which Eve developed a technology to access instantaneous values
of intensity, and considered a scenario independent from the
source and channel used, which are set to mathematical Dirac
delta 8(¢). In this case, the intensity of the combined state
Iy 5,(t) =|A, ®B,* = |A,(t) ® B,(t)]*, with @ the convolu-
tion operator.

During each step of the communication, Eve stores the
intensities |A, (t)|* and |B,, (t)|* of transmitted states, and attempt
the reconstruction of the state |A, ® B,,|* by combining the states
at disposal via |A,|* @ |B,|*, with @ a chosen operator. We here
considered all the possible cases of & = +,-,® (sum, product,
convolution).

The outcome of this attack is quantified by the average
Shannon information entropy contained in each bit measured by
Eve, and calculated from the average Shannon information
entropy H = —dlog, d — (1 — d)log,(1 — d) per bit, with d the
difference in bits between the key of one user (Alice) and the key
reconstructed by Eve. The Shannon entropy H quantifies the
uncertainty of Eve for every bit measured. Whend =0ord =1
(Eve measures the same or the opposite of Alice), the information
entropy of Eve is zero, because Eve predicts the key with no
uncertainty. In the other cases, H is a positive function with
maximum of H =1. In this condition, Eve has 1bit of
uncertainty for every bit measured and zero information on
the key.

Figure 2a shows the average uncertainty of Eve when Alice and
Bob mix random wavepackets described by Eq. (1) and contain-
ing an increasing number of different frequencies w,, ..., wy,.
Computational details are furnished in Supplementary Note I. A
chaotic wave, arising from chaotic scattering, obeys a universal
Gaussian statistics for the intensity>*30 P(I) = ae™® (I = A2 for
Alice and I = B? for Bob), and it is attained at large M, where the
states A, and B,, are completely randomized. At lower M, the
wavepackets A, and B, are aperiodic superpositions of waves
with no general behavior.

In the limit of small M, the statistics of the wavepackets are
different, and Eve’s uncertainty oscillates in a large interval with
situations in which the attacker can infer the key by combining
her measurements via ® (Fig. 2b). Using different operators, as
intuitively expected, yields no information. When the number M
of frequencies increases and the states A, and B,, become chaotic,
each realization shows the same universal features (Fig. 2¢) and
the variance of the uncertainty collapse (Fig. 2a). In this limit, the
uncertainty of Eve becomes unitary (H > 0.998+0.01): the
information accessible is not sufficient to reconstruct the complex
state being formed at Alice and Bob’s end and the system is
unconditionally secure.

Active attacks (see Supplementary Note II) introduce determi-
nistic errors in the communication sequence between Alice and
Bob with no information for Eve. Errors are small and scale as
1/N, with N >> 1 being the number of chaotic states available in
Alice and Bob’s chips. These errors can also be eliminated by
using information reconciliation and privacy amplification®!-%4,
both conducted over the public authenticated channel. With
information reconciliation, Alice and Bob obtain an identical key
at each user’s side by the exchange of minimal information (such
as the mere bit parity of block key sequences). The second phase,
privacy amplification, is then applied to eliminate effectively the
information acquired by Eve during the reconciliation step.
Privacy amplification is typically performed by using universal
hash functions, which generate a new shorter key, on which Eve
has zero information.

Security against spectral attacks. The transfer function H(w) of
the system connecting Alice and Bob is represented as follows:

H(w) = S(w) - Hy (0) - HY (@) - C(@) - a(w),  (3)

with HI(L‘") (w), H](B")(a)) the transfer function of the chip of Alice
and Bob, respectively, C(w) the contribution of the transmission
system, S(w) the spectrum of the input source, and a(w) the
coupling coefficient with spectrum analyzer, with |a(w)| < 1 for
energy conservation. For reciprocity, the coefficient a(w) is the

same for both users. The random PDS P, = |H{" (w)|* and P, =

\Hg") (w)[* change at every transmission step, due to the different
input conditions selected by each user.
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In a spectral attack, Eve measures the spectra Py, and Pgg
transmitted over the communication line with identical copies of
the users’ spectrum analyzers, and then attempts a reconstruction
of the combined state via Py, Py /P, with Pg the spectrum of the
source. In the best ideal scenario for Eve, this operation returns
the following estimate (Supplementary Note III):

Py, - Py 1 A
5= P+ V3 @
with (Pg,,) the mean value of the combined state Py, measured
by Bob and A the uncertainty measured by Alice and Bob in their
combined states. We analyze the security of the system in the

worst case for the users, in which |a(w)|* = 1. This limit is
practically impossible to achieve: it implies a technology that can
measure a state without perturbing it, and this would at least
violate the projection postulate of quantum mechanics.

We considered different communications scenario, in which
Alice and Bob measure correlated spectra with different statistical
fluctuations, and developed a multi-bit AHB transform (detailed
in Supplementary Note IV), which optimizes the extraction of
information from acquired users spectra. Commercially available
detectors furnish at least 16 bits for each spectral point: if this

o

information is maximized, the key generation workload is highly
reduced.

In the security analysis, we considered statistical fluctuations
between Alice and Bob PDS with standard deviation 0,5 < 8%,
which is typically met in classical communication networks. We
set the maximum tolerable BER equal to the statistical
fluctuations in the spectra o,5. This implies that the BER is
lower than the tolerable limit of 11% set for QKD7.

Figure 2d-f shows the outcomes in terms of BER and adversary
uncertainty per bit resulting from a spectral attack for different
045 Results are calculated from a statistical set of 10° different
chaotic PDS measured by Alice Py}, Bob Py = Py + A and
reconstructed by Eve Py = P, + A’ at the theoretical limit,
with: (A) = (A') = 0, \/(A?) = 0,45 V(A?) = V30,3

Figure 2d-f demonstrates that independently from the
communications scenario considered, when the BER reaches
0 ,p> the users can distill an OTP key with N, > 10 bits per spectral
point measured, while maintaining a unitary uncertainty to the
attacker (uncertainty per bit higher than 0.99 bit). As in Fig. 2a,
the variance in Eve’s uncertainty is negligible. This arises from the
use chaotic spectra with universal statistics: the outcomes are
independent on the particular sequence considered.
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direction. The image in a is adapted from ref. 65 under license CC BY-SA 4.0.

If we set N, to the point where the BER equals 0,5, N,
increases from (d) N, =11 to (e) N, =12, and then to (f)
N, = 14, and can be controlled by acting on o,5.

These results demonstrate that at the theoretical limit and in
the worst case for the users, the attacker has zero information on
the key and the system is unconditionally secure.

Supplementary Note V demonstrates that in the absence of
active eavesdropping and by using the multi-bit AHB transform,
the number of pulses N, to be transmitted for generating an OTP

key can be reduced to ~1/1000 of the length of the message.

Physical implementation. We developed chaotic chips from
human fingerprints. After biometric scanning (Fig. 3a, b), the
digital fingerprint image is transformed into a chaotic micro-
resonator composed by a series of point scatterers made by
reflective nanodisks of constant radius r (Fig. 3c). The micro-
resonator acts as a chaotic billiard>>-¢0. In Figure 3c-e we opti-
mized the resonator chaos against conditions 1 and 3 from the
communication protocol (Supplementary Note VI).

The fingerprint resonator is characterized by a large number of
disjoint convex bodies, representing a finite version of the Lorentz
gas billiard, which is known to possess a strongly chaotic
behavior>. Figure 3c shows the propagation of light rays of two
input conditions (x,,n) (solid red line) and (x, + €,n) (solid
green line), having the same initial orientation n and spatially
displaced by a random vector € with |e| = €,,;, = 2.2 x 10716, the
smallest floating point number representable at the computer.
After few collisions, the dynamics diverges exponentially.

Figure 3d calculates the average Lyapunov exponent {(u), which
quantifies the average exponential grow of different input
conditions, and the volume of phase space of input conditions
filled by chaotic dynamics as a function of the scatterers’ radius r
(Supplementary Note VI). The designed fingerprint resonator
with n, = 322 scatterers is fully chaotic (as requested at point 1)
for r > 0.008L, with L being the resonator width along y.

Figure 3e analyzes the fingerprint structure against conditions 3
and 4. The plot shows the dynamics of three identical input
conditions (solid blue, red, and green lines) launched in three
different fingerprint resonators implemented by randomly
shifting the positions of each scatterer s; by a vector with random
orientation €;, with |¢;| = €,,;,. An infinitesimal transformation in
the fingerprint’s scatterers leads to a chaotic structure with
exponentially diverging trajectories with respect to the old one.
This is a general result, demonstrated in Supplementary Note VII,
along with other possible transformations that satisfy require-
ments 3 and 4.

Figure 4a shows the typical dynamics of light in a fully chaotic
fingerprint resonator with L =7 um and r = 0.012L, calculated
from finite-difference time-domain simulations for a structure of
air holes on a Silicon substrate excited by a TE polarized, 150-fs-
long pulse centered at A =1550 nm. Chaotic scattering rando-
mizes the wavefront, generating wavepackets with universal
Gaussian statistics (Fig. 4b).

Figure 4a-d analyzes the correlations among chaotic states
extracted from transmitted PDS. Spectra are advantageous over
intensity signals, favoring less expensive implementations. We
calculated transmitted electromagnetic spectra for both TE and
TM polarized point sources of 150 fs duration, centered at the
wavelength A =1550nm, and launched at x =y =0 with
displacements y,,y,,... along y within 1 um range with 20 nm
resolution. For each input position, we computed the transmitted
energy spectrum and transformed it into a binary sequence by the
AHB technique. We then computed the entropy correlation
matrix H, with elements H; = —d;;log, d; — (1 — d;)log, (1 —
d;) being the Shannon information entropy of the hamming
distance d;; among the bit sequences i and j arising from PDS
obtained by input shifts y; and y;. The entropy correlation matrix

is strongly diagonal (Fig. 4c), showing that the generated bit
sequences are completely uncorrelated. A displacement beyond
200 nm provides uncorrelated sequences (Fig. 4d).
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In the system of Fig. 1, by using displacement and two
polarizations, we can generate (1000/0.2 x 2)* = 10% different
spectra for every millimeter of chip length L. If we measure each
spectrum with 1024 pixel and convert each pixel into N, bits, we
can generate 0.1 - N, Tbit of different keys for every millimeter of
chip unit length L, and for every communication.

In the following experimental demonstration, fingerprint chips
are fabricated by e-beam lithography, patterning the fingerprint
resonator structure onto a silicon substrate developed with a
silicon-on-insulator platform that is CMOS (complementary
metal-oxide-semiconductor) compatible and operating in the
standard telecommunication C -+ L band%’. Figure 5a shows a
scanning electron microscope of a fingerprint chip. The structure
is L =40 pm wide and 100 pm long.

Figure 5b, ¢ shows an example of an irreversible process®! that
can be applied to the chips. It consists in first depositing on top of
the sample a non-purified drop of water, which naturally contains
colloidal occlusions that act as additional scatterers (Fig. 5b).
When the chip dries out naturally, we obtain another distribution

of impurities on the chip’s surface (Fig. 5¢). In commercial
applications, this step can be accomplished by solid-state
scatterers, such as, for example, doped hydrogels, which are
dynamically deformable®2-64,

To characterize the chips in (a—c), we launched light signals of
100 nm bandwidth, centered around the communication wave-
length 1550 nm, by end fire coupling with a x60 aspheric lens,
mounted on a XYZ stage with repeatable spatial shifts of 0.5 um.

Figure 5d shows transmission optical spectra recorded at
different input positions, indicated on the right, and the
corresponding generated bit sequences, each of 1024 bits, for
the original chip (a). Figure 5e shows the entropy correlation
among 40 different input positions shifted by 1um each. In
agreement with the theoretical predictions of Fig. 4c, d, generated
bit sequences are uncorrelated with each other. Figure 5f verifies
the optical reciprocal behavior of the chip against condition 2.
The figure shows the correlation among bit sequences created by
launching signals from the input and collecting transmission
spectra at the output, versus the bit sequences measured by
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Fig. 6 Experiments on key distribution and attacks in the spectral domain. a Experimental setup composed by two chips connected by a standard
monomodal optical fiber SMF-28. b Communication sequence of the chosen input conditions between Alice and Bob. c¢-e Example of data sent during one
communication step, including ¢ the individual random spectra of the user as measured from the communication line, d the combined spectra at the distal
end measured by Alice and Bob, e the absolute spectral differences in the combined states measured by the users (solid blue line) and the state
reconstructed by an ideal attacker (solid orange line). f-h Encryption and decryption experiments. h shows the results of Eve from the best possible

attempt to recreate the key of the users.
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launching signals from the output and collecting spectra at the
input. The chips have correlated bit sequences obtained in direct
and reciprocal launching conditions (Fig. 5f, diagonal), and
uncorrelated to each other (Fig. 5f, yellow area).

Figure 5g analyzes the entropy correlation between the bit
sequences created from the same positions in the chips at (a) and
(b), before and after the transformation, respectively, while
Fig. 5h shows the correlations among sequences generated from
chips at (a), (b), and (c). The sequences are uncorrelated with
each other, with an average correlation entropy per bit of
(H) = 0.998 +0.001 bit, experimentally demonstrating that the
irreversible transformation (a, b, ¢) generated different chip
responses.

Figure 5g, h experimentally proves that the chips satisfy the
conditions 3 and 4 of the communication protocol.

Cryptographic transmission. We used the setup of Fig. 6a,
assembled with inexpensive classical optical components. We
employed a standard single mode telecommunication fiber SMF-
28 that connects two fully chaotic fingerprint chips with
L =40 pm. We chose different input conditions by using XYZ
translation stages with 1pm spatial shifts. Supplementary
Note VIII discusses an integrated structure with on-chip coupling
from end to end of the communication line. As in the previous
experiments, we employed light pulses with 100 nm bandwidth
and measured PDS with 0.1 nm resolution.

Figure 6b shows a typical communication with a list of input
positions selected by each user. Figure 6c, d analyzes the
transmission for one set of input conditions showing: (c) the
PDS sent by Alice and Bob and (d) the spectra measured at the
distal end by the users. The PDS of the combined state PDSp ,

measured by Alice is correlated to the spectrum PDS, g

measured by Bob. The solid blue line in Fig. 6e quantifies the
difference between the data measured by Alice and Bob.

The solid orange line in Fig. 6e shows the difference between
the spectrum measured at Bob’s end and the one reconstructed by
Eve with a spectral attack, by measuring transmitted spectra Py ,
P, and combining them via Py P, /P, with Pg the spectrum
of the source (Supplementary Fig. 1). All Eve’s measurements are
performed with the users’s spectrum analyzers, without using any
component that is not present in the setup. Even in this scenario,
there are significant differences between Bob and Eve’s spectra.

Figure 6f-h visualizes these results with encryption and
decryption experiments. Alice encodes the data being sent out
(f) with a key generated from the sequence of repeated spectra
with the multi-bit AHB transform optimized for o,; = 7%,
which is the average standard deviation generated in the system
of Fig. 6a.

The ciphertext generated is then transmitted to Bob end, who
decodes it with his own generated key. The image decoded by
Bob is correctly retrieved from the original (Fig. 6g). Conversely,
the image decoded by Eve is just white noise. With this
elementary setup and with the chips designed (L =40 um), we
can extract 40> - N, - 1024 = 2 - N, Mbit of different keys at each
communication.

In Supplementary Fig. 2 we report the results of the NIST
statistical test suite applied to the keys generated with the system
of Fig. 6. The key generated passed all the tests, validating the
scheme against the NIST standards for real-world applications.

Discussion. We have demonstrated a protocol for a perfect
secrecy cryptography that uses CMOS-compatible fingerprint
silicon chips, which transmit information on a public classical
optical network. The system’s security is evaluated following the
Kerckhoff principle. The second law of thermodynamics and the

exponential sensitivity of chaos prevents the attacker from getting
any information on the key being exchanged by the users. The
protocol proposed is fully compatible with the techniques of
privacy amplification and information reconciliation already
developed for QKD. Beyond the initial communication required
for authenticating the users, the system does not require elec-
tronic databases, private keys, or confidential communications.
Combined with the technological maturity, speed, and scalability
of classic optical communications, the results show a open
pathway towards implementing perfect secrecy cryptography at
the global scale with contained costs.
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